ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.12662
  4. Cited By
FedDBL: Communication and Data Efficient Federated Deep-Broad Learning
  for Histopathological Tissue Classification

FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification

24 February 2023
Tianpeng Deng
Yanqi Huang
Guoqiang Han
Zhenwei Shi
Jiatai Lin
Qianming Dou
Zaiyi Liu
Xiaohui Guo
Xin Chen
Chu Han
    FedML
ArXivPDFHTML

Papers citing "FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification"

3 / 3 papers shown
Title
Label-Efficient Self-Supervised Federated Learning for Tackling Data
  Heterogeneity in Medical Imaging
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging
Rui Yan
Liangqiong Qu
Qingyue Wei
Shih-Cheng Huang
Liyue Shen
D. Rubin
Lei Xing
Yuyin Zhou
FedML
78
90
0
17 May 2022
Selective Synthetic Augmentation with HistoGAN for Improved
  Histopathology Image Classification
Selective Synthetic Augmentation with HistoGAN for Improved Histopathology Image Classification
Yuan Xue
Jiarong Ye
Qianying Zhou
L. R. Long
Sameer Kiran Antani
Z. Xue
Carl Cornwell
R. Zaino
K. Cheng
Xiaolei Huang
MedIm
188
102
0
10 Nov 2021
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
760
0
28 Sep 2019
1