Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.12366
Cited By
Less is More: Data Pruning for Faster Adversarial Training
23 February 2023
Yize Li
Pu Zhao
Xinyu Lin
B. Kailkhura
Ryan Goldh
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Less is More: Data Pruning for Faster Adversarial Training"
19 / 19 papers shown
Title
Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains
Qilong Zhang
Xiaodan Li
YueFeng Chen
Jingkuan Song
Lianli Gao
Yuan He
Hui Xue
AAML
83
65
0
27 Jan 2022
Improving language models by retrieving from trillions of tokens
Sebastian Borgeaud
A. Mensch
Jordan Hoffmann
Trevor Cai
Eliza Rutherford
...
Simon Osindero
Karen Simonyan
Jack W. Rae
Erich Elsen
Laurent Sifre
KELM
RALM
222
1,083
0
08 Dec 2021
A Survey of Modern Deep Learning based Object Detection Models
Syed Sahil Abbas Zaidi
M. S. Ansari
Asra Aslam
N. Kanwal
M. Asghar
Brian Lee
VLM
ObjD
117
752
0
24 Apr 2021
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Deep Model Training
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
A. De
Rishabh K. Iyer
OOD
127
200
0
27 Feb 2021
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
184
1,344
0
03 Oct 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
56
404
0
26 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
255
831
0
19 Feb 2020
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
298
2,387
0
11 Nov 2019
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
88
199
0
11 Sep 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
125
1,245
0
29 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
56
151
0
01 Apr 2019
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
D. Song
AAML
72
161
0
13 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
199
3,180
0
01 Feb 2018
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
83
883
0
08 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
281
12,029
0
19 Jun 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
241
8,548
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
344
10,172
0
16 Mar 2016
1