ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11891
13
3

Sequential Hierarchical Least-Squares Programming for Prioritized Non-Linear Optimal Control

23 February 2023
Kai Pfeiffer
A. Kheddar
ArXivPDFHTML
Abstract

We present a sequential hierarchical least-squares programming solver with trust-region and hierarchical step-filter with application to prioritized discrete non-linear optimal control. It is based on a hierarchical step-filter which resolves each priority level of a non-linear hierarchical least-squares programming via a globally convergent sequential quadratic programming step-filter. Leveraging a condition on the trust-region or the filter initialization, our hierarchical step-filter maintains this global convergence property. The hierarchical least-squares programming sub-problems are solved via a sparse reduced Hessian based interior point method. It leverages an efficient implementation of the turnback algorithm for the computation of nullspace bases for banded matrices. We propose a nullspace trust region adaptation method embedded within the sub-problem solver towards a comprehensive hierarchical step-filter. We demonstrate the computational efficiency of the hierarchical solver on typical test functions like the Rosenbrock and Himmelblau's functions, inverse kinematics problems and prioritized discrete non-linear optimal control.

View on arXiv
Comments on this paper