ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11006
  4. Cited By
Data-driven reduced-order modelling for blood flow simulations with
  geometry-informed snapshots

Data-driven reduced-order modelling for blood flow simulations with geometry-informed snapshots

21 February 2023
Dongwei Ye
Valeria Krzhizhanovskaya
Alfons G. Hoekstra
    OOD
    AI4CE
ArXivPDFHTML

Papers citing "Data-driven reduced-order modelling for blood flow simulations with geometry-informed snapshots"

3 / 3 papers shown
Title
Bayesian operator inference for data-driven reduced-order modeling
Bayesian operator inference for data-driven reduced-order modeling
Mengwu Guo
Shane A. McQuarrie
Karen E. Willcox
11
34
0
22 Apr 2022
Direct Estimation of Spinal Cobb Angles by Structured Multi-Output
  Regression
Direct Estimation of Spinal Cobb Angles by Structured Multi-Output Regression
Haoliang Sun
Xiantong Zhen
C. Bailey
P. Rasoulinejad
Yilong Yin
Shuo Li
CML
37
108
0
23 Dec 2020
Non-intrusive and semi-intrusive uncertainty quantification of a
  multiscale in-stent restenosis model
Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model
Dongwei Ye
A. Nikishova
L. Veen
Pavel S. Zun
Alfons G. Hoekstra
60
21
0
01 Sep 2020
1