Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.09634
Cited By
Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity
19 February 2023
Richeng Jin
Xiaofan He
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity"
10 / 10 papers shown
Title
FetchSGD: Communication-Efficient Federated Learning with Sketching
D. Rothchild
Ashwinee Panda
Enayat Ullah
Nikita Ivkin
Ion Stoica
Vladimir Braverman
Joseph E. Gonzalez
Raman Arora
FedML
48
363
0
15 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
61
275
0
02 Jul 2020
UVeQFed: Universal Vector Quantization for Federated Learning
Nir Shlezinger
Mingzhe Chen
Yonina C. Eldar
H. Vincent Poor
Shuguang Cui
FedML
MQ
44
225
0
05 Jun 2020
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
78
136
0
26 Feb 2020
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
111
1,128
0
13 Sep 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
33
217
0
15 May 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
44
1,343
0
07 Mar 2019
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
152
1,056
0
24 May 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
107
1,399
0
05 Dec 2017
Revisiting Distributed Synchronous SGD
Jianmin Chen
Xinghao Pan
R. Monga
Samy Bengio
Rafal Jozefowicz
64
799
0
04 Apr 2016
1