Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.09457
Cited By
Attacks in Adversarial Machine Learning: A Systematic Survey from the Life-cycle Perspective
19 February 2023
Baoyuan Wu
Zihao Zhu
Li Liu
Qingshan Liu
Zhaofeng He
Siwei Lyu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attacks in Adversarial Machine Learning: A Systematic Survey from the Life-cycle Perspective"
12 / 62 papers shown
Title
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
100
723
0
12 Dec 2018
Adversarial Examples: Opportunities and Challenges
Jiliang Zhang
Chen Li
AAML
47
233
0
13 Sep 2018
Structured Adversarial Attack: Towards General Implementation and Better Interpretability
Kaidi Xu
Sijia Liu
Pu Zhao
Pin-Yu Chen
Huan Zhang
Quanfu Fan
Deniz Erdogmus
Yanzhi Wang
Xinyu Lin
AAML
87
160
0
05 Aug 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
201
303
0
21 May 2018
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
Shang-Tse Chen
Cory Cornelius
Jason Martin
Duen Horng Chau
ObjD
185
425
0
16 Apr 2018
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Konda Reddy Mopuri
Aditya Ganeshan
R. Venkatesh Babu
AAML
89
205
0
24 Jan 2018
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text
Nicholas Carlini
D. Wagner
AAML
71
1,076
0
05 Jan 2018
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Xinyun Chen
Chang-rui Liu
Yue Liu
Kimberly Lu
D. Song
AAML
SILM
80
1,822
0
15 Dec 2017
Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective
Seong Joon Oh
Mario Fritz
Bernt Schiele
CVBM
AAML
383
160
0
28 Mar 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
113
2,520
0
26 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
269
4,620
0
18 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
170
8,513
0
16 Aug 2016
Previous
1
2