ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09352
  4. Cited By
MaxGNR: A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio
  for Multi-Task Learning

MaxGNR: A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio for Multi-Task Learning

18 February 2023
Caoyun Fan
Wenqing Chen
Jidong Tian
Yitian Li
Hao He
Yaohui Jin
ArXivPDFHTML

Papers citing "MaxGNR: A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio for Multi-Task Learning"

3 / 3 papers shown
Title
Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
Lukas Kirchdorfer
Cathrin Elich
Simon Kutsche
Heiner Stuckenschmidt
Lukas Schott
Jan M. Kohler
33
5
0
15 Aug 2024
MMPareto: Boosting Multimodal Learning with Innocent Unimodal Assistance
MMPareto: Boosting Multimodal Learning with Innocent Unimodal Assistance
Yake Wei
Di Hu
32
13
0
28 May 2024
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,889
0
15 Sep 2016
1