Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.09042
Cited By
Privately Customizing Prefinetuning to Better Match User Data in Federated Learning
17 February 2023
Charlie Hou
Hongyuan Zhan
Akshat Shrivastava
Sida I. Wang
S. Livshits
Giulia Fanti
Daniel Lazar
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privately Customizing Prefinetuning to Better Match User Data in Federated Learning"
16 / 16 papers shown
Title
AugFL: Augmenting Federated Learning with Pretrained Models
Sheng Yue
Zerui Qin
Yongheng Deng
Ju Ren
Yaoxue Zhang
Junshan Zhang
FedML
85
0
0
04 Mar 2025
Ten Challenging Problems in Federated Foundation Models
Tao Fan
Hanlin Gu
Xuemei Cao
Chee Seng Chan
Qian Chen
...
Y. Zhang
Xiaojin Zhang
Zhenzhe Zheng
Lixin Fan
Qiang Yang
FedML
83
4
0
14 Feb 2025
Distributed, communication-efficient, and differentially private estimation of KL divergence
Mary Scott
Sayan Biswas
Graham Cormode
Carsten Maple
FedML
75
0
0
25 Nov 2024
Differentially Private Kernel Density Estimation
Erzhi Liu
Jerry Yao-Chieh Hu
Alex Reneau
Zhao Song
Han Liu
66
3
0
03 Sep 2024
Deconstructing The Ethics of Large Language Models from Long-standing Issues to New-emerging Dilemmas
Chengyuan Deng
Yiqun Duan
Xin Jin
Heng Chang
Yijun Tian
...
Kuofeng Gao
Sihong He
Jun Zhuang
Lu Cheng
Haohan Wang
AILaw
40
16
0
08 Jun 2024
PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs
Charlie Hou
Akshat Shrivastava
Hongyuan Zhan
Rylan Conway
Trang Le
Adithya Sagar
Giulia Fanti
Daniel Lazar
26
8
0
05 Jun 2024
Prompt Public Large Language Models to Synthesize Data for Private On-device Applications
Shanshan Wu
Zheng Xu
Yanxiang Zhang
Yuanbo Zhang
Daniel Ramage
SyDa
21
9
0
05 Apr 2024
Efficiently Computing Similarities to Private Datasets
A. Backurs
Zinan Lin
S. Mahabadi
Sandeep Silwal
Jakub Tarnawski
65
4
0
13 Mar 2024
On the Convergence of Differentially-Private Fine-tuning: To Linearly Probe or to Fully Fine-tune?
Shuqi Ke
Charlie Hou
Giulia Fanti
Sewoong Oh
36
4
0
29 Feb 2024
Grounding Foundation Models through Federated Transfer Learning: A General Framework
Yan Kang
Tao Fan
Hanlin Gu
Xiaojin Zhang
Lixin Fan
Qiang Yang
AI4CE
68
19
0
29 Nov 2023
Privacy in Large Language Models: Attacks, Defenses and Future Directions
Haoran Li
Yulin Chen
Jinglong Luo
Yan Kang
Xiaojin Zhang
Qi Hu
Chunkit Chan
Yangqiu Song
PILM
42
41
0
16 Oct 2023
GPT-FL: Generative Pre-trained Model-Assisted Federated Learning
Tuo Zhang
Tiantian Feng
Samiul Alam
Dimitrios Dimitriadis
Sunwoo Lee
Mi Zhang
Shrikanth S. Narayanan
Salman Avestimehr
FedML
13
27
0
03 Jun 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zi-Han Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
32
19
0
23 May 2023
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
132
119
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
1