Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.08878
Cited By
Less is More: The Influence of Pruning on the Explainability of CNNs
17 February 2023
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Less is More: The Influence of Pruning on the Explainability of CNNs"
50 / 51 papers shown
Title
Pruning in the Face of Adversaries
F. Merkle
Maximilian Samsinger
Pascal Schöttle
AAML
CVBM
44
3
0
19 Aug 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
432
21,392
0
25 Mar 2021
Socially Responsible AI Algorithms: Issues, Purposes, and Challenges
Lu Cheng
Kush R. Varshney
Huan Liu
FaML
105
150
0
01 Jan 2021
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaML
XAI
48
773
0
16 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
593
40,961
0
22 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
74
402
0
19 Oct 2020
Utilizing Explainable AI for Quantization and Pruning of Deep Neural Networks
Muhammad Sabih
Frank Hannig
J. Teich
MQ
82
24
0
20 Aug 2020
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
80
465
0
31 Jul 2020
On quantitative aspects of model interpretability
An-phi Nguyen
María Rodríguez Martínez
43
114
0
15 Jul 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
95
377
0
30 Apr 2020
Streamlining Tensor and Network Pruning in PyTorch
Michela Paganini
Jessica Zosa Forde
36
12
0
28 Apr 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
260
1,049
0
06 Mar 2020
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Seul-Ki Yeom
P. Seegerer
Sebastian Lapuschkin
Alexander Binder
Simon Wiedemann
K. Müller
Wojciech Samek
CVBM
53
207
0
18 Dec 2019
Towards Explainable Deep Neural Networks (xDNN)
Plamen Angelov
Eduardo Soares
AAML
61
261
0
05 Dec 2019
Improving Feature Attribution through Input-specific Network Pruning
Ashkan Khakzar
Soroosh Baselizadeh
Saurabh Khanduja
Christian Rupprecht
S. T. Kim
Nassir Navab
FAtt
40
11
0
25 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,254
0
22 Oct 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
89
1,446
0
17 Jul 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
133
18,106
0
28 May 2019
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
151
758
0
25 Feb 2019
Quantifying Interpretability and Trust in Machine Learning Systems
Philipp Schmidt
F. Biessmann
45
113
0
20 Jan 2019
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELM
FaML
50
219
0
26 Nov 2018
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
36
1,471
0
11 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
123
1,965
0
08 Oct 2018
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
Yang He
Guoliang Kang
Xuanyi Dong
Yanwei Fu
Yi Yang
AAML
VLM
60
963
0
21 Aug 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
77
1,090
0
31 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
98
681
0
28 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
83
1,858
0
31 May 2018
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers
Tianyun Zhang
Shaokai Ye
Kaiqi Zhang
Jian Tang
Wujie Wen
M. Fardad
Yanzhi Wang
57
438
0
10 Apr 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
91
219
0
20 Mar 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
225
3,461
0
09 Mar 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,954
0
06 Feb 2018
Interpreting Convolutional Neural Networks Through Compression
R. Abbasi-Asl
Bin Yu
FAtt
30
21
0
07 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
103
2,294
0
30 Oct 2017
Data-Driven Sparse Structure Selection for Deep Neural Networks
Zehao Huang
Naiyan Wang
83
561
0
05 Jul 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
239
4,259
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,864
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
192
3,869
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,986
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
385
3,785
0
28 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
277
19,981
0
07 Oct 2016
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
63
1,899
0
28 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
247
9,305
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
68
534
0
07 Dec 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
132
1,192
0
21 Sep 2015
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
310
6,669
0
08 Jun 2015
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
442
43,635
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,330
0
04 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
305
7,289
0
20 Dec 2013
1
2
Next