ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08309
  4. Cited By
The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained
  Optimization: A Deep Learning Approach

The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach

16 February 2023
Yongcun Song
Xiaoming Yuan
Hangrui Yue
    PINN
ArXivPDFHTML

Papers citing "The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach"

6 / 6 papers shown
Title
FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
Yongcun Song
Ziqi Wang
Enrique Zuazua
FedML
35
2
0
21 Feb 2024
Accelerated primal-dual methods with enlarged step sizes and operator
  learning for nonsmooth optimal control problems
Accelerated primal-dual methods with enlarged step sizes and operator learning for nonsmooth optimal control problems
Yongcun Song
Xiaoming Yuan
Hangrui Yue
AI4CE
19
2
0
01 Jul 2023
Solving PDE-constrained Control Problems Using Operator Learning
Solving PDE-constrained Control Problems Using Operator Learning
Rakhoon Hwang
Jae Yong Lee
J. Shin
H. Hwang
AI4CE
117
43
0
09 Nov 2021
Physics and Equality Constrained Artificial Neural Networks: Application
  to Forward and Inverse Problems with Multi-fidelity Data Fusion
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
34
68
0
30 Sep 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
50
494
0
09 Feb 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
760
0
13 Mar 2020
1