ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.04791
  4. Cited By
Symbolic Metamodels for Interpreting Black-boxes Using Primitive
  Functions

Symbolic Metamodels for Interpreting Black-boxes Using Primitive Functions

9 February 2023
Mahed Abroshan
Saumitra Mishra
Mohammad Mahdi Khalili
ArXivPDFHTML

Papers citing "Symbolic Metamodels for Interpreting Black-boxes Using Primitive Functions"

11 / 11 papers shown
Title
Symbolic Regression via Neural-Guided Genetic Programming Population
  Seeding
Symbolic Regression via Neural-Guided Genetic Programming Population Seeding
T. Nathan Mundhenk
Mikel Landajuela
Ruben Glatt
Claudio Santiago
Daniel Faissol
Brenden K. Petersen
70
91
0
29 Oct 2021
Symbolic Pregression: Discovering Physical Laws from Distorted Video
Symbolic Pregression: Discovering Physical Laws from Distorted Video
S. Udrescu
Max Tegmark
51
41
0
19 May 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
113
6,251
0
22 Oct 2019
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
122
940
0
20 Jun 2018
Learning Equations for Extrapolation and Control
Learning Equations for Extrapolation and Control
Subham S. Sahoo
Christoph H. Lampert
Georg Martius
38
233
0
19 Jun 2018
Local Rule-Based Explanations of Black Box Decision Systems
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
123
437
0
28 May 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
276
2,257
0
24 Jun 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
174
3,865
0
10 Apr 2017
Model-Agnostic Interpretability of Machine Learning
Model-Agnostic Interpretability of Machine Learning
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
84
838
0
16 Jun 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
158
3,685
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
943
16,931
0
16 Feb 2016
1