Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.04787
Cited By
On the Privacy-Robustness-Utility Trilemma in Distributed Learning
9 February 2023
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Privacy-Robustness-Utility Trilemma in Distributed Learning"
22 / 22 papers shown
Title
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
55
0
0
03 May 2025
Exactly Minimax-Optimal Locally Differentially Private Sampling
Hyun-Young Park
Shahab Asoodeh
Si-Hyeon Lee
36
1
0
30 Oct 2024
A survey on secure decentralized optimization and learning
Changxin Liu
Nicola Bastianello
Wei Huo
Yang Shi
Karl H. Johansson
48
2
0
16 Aug 2024
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
44
0
0
09 Aug 2024
Differentially Private Neural Network Training under Hidden State Assumption
Ding Chen
Chen Liu
FedML
32
0
0
11 Jul 2024
The Privacy Power of Correlated Noise in Decentralized Learning
Youssef Allouah
Anastasia Koloskova
Aymane El Firdoussi
Martin Jaggi
R. Guerraoui
31
4
0
02 May 2024
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
AAML
27
1
0
01 May 2024
On the Conflict of Robustness and Learning in Collaborative Machine Learning
Mathilde Raynal
Carmela Troncoso
27
2
0
21 Feb 2024
TernaryVote: Differentially Private, Communication Efficient, and Byzantine Resilient Distributed Optimization on Heterogeneous Data
Richeng Jin
Yujie Gu
Kai Yue
Xiaofan He
Zhaoyang Zhang
Huaiyu Dai
FedML
20
0
0
16 Feb 2024
Robustness, Efficiency, or Privacy: Pick Two in Machine Learning
Youssef Allouah
R. Guerraoui
John Stephan
OOD
26
2
0
22 Dec 2023
Near-Optimal Resilient Aggregation Rules for Distributed Learning Using 1-Center and 1-Mean Clustering with Outliers
Yuhao Yi
R. You
Hong Liu
Changxin Liu
Yuan Wang
Jiancheng Lv
OOD
27
3
0
20 Dec 2023
Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Geovani Rizk
OOD
34
15
0
24 Sep 2023
SABLE: Secure And Byzantine robust LEarning
Antoine Choffrut
R. Guerraoui
Rafael Pinot
Renaud Sirdey
John Stephan
Martin Zuber
AAML
34
2
0
11 Sep 2023
On the Tradeoff between Privacy Preservation and Byzantine-Robustness in Decentralized Learning
Haoxiang Ye
He Zhu
Qing Ling
FedML
41
11
0
28 Aug 2023
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
36
21
0
01 Nov 2022
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
31
67
0
24 May 2022
Combining Differential Privacy and Byzantine Resilience in Distributed SGD
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
FedML
43
4
0
08 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
168
350
0
25 Sep 2021
Robust Testing and Estimation under Manipulation Attacks
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
AAML
52
9
0
21 Apr 2021
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
53
75
0
18 Feb 2021
Approximate Byzantine Fault-Tolerance in Distributed Optimization
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
28
42
0
22 Jan 2021
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
1