ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.04228
  4. Cited By
Federated Learning as Variational Inference: A Scalable Expectation
  Propagation Approach

Federated Learning as Variational Inference: A Scalable Expectation Propagation Approach

8 February 2023
Han Guo
P. Greengard
Hongyi Wang
Andrew Gelman
Yoon Kim
Eric P. Xing
    FedML
ArXiv (abs)PDFHTML

Papers citing "Federated Learning as Variational Inference: A Scalable Expectation Propagation Approach"

24 / 24 papers shown
Title
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
Nurbek Tastan
Samuel Horváth
Martin Takáč
Karthik Nandakumar
FedML
125
0
0
03 Oct 2024
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
54
12
0
24 Feb 2022
FedJAX: Federated learning simulation with JAX
FedJAX: Federated learning simulation with JAX
Jae Hun Ro
A. Suresh
Ke Wu
FedML
90
49
0
04 Aug 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
273
419
0
14 Jul 2021
Federated Learning via Posterior Averaging: A New Perspective and
  Practical Algorithms
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric Xing
Afshin Rostamizadeh
FedML
101
112
0
11 Oct 2020
Federated Generalized Bayesian Learning via Distributed Stein
  Variational Gradient Descent
Federated Generalized Bayesian Learning via Distributed Stein Variational Gradient Descent
Rahif Kassab
Osvaldo Simeone
FedML
78
46
0
11 Sep 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
231
577
0
27 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMeFedML
66
1,337
0
15 Jul 2020
On the Outsized Importance of Learning Rates in Local Update Methods
On the Outsized Importance of Learning Rates in Local Update Methods
Zachary B. Charles
Jakub Konecný
FedML
78
54
0
02 Jul 2020
Adaptive Federated Optimization
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
177
1,437
0
29 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedMLAI4CE
256
6,261
0
10 Dec 2019
Can You Really Backdoor Federated Learning?
Can You Really Backdoor Federated Learning?
Ziteng Sun
Peter Kairouz
A. Suresh
H. B. McMahan
FedML
75
572
0
18 Nov 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDLUQCV
136
247
0
06 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient
  Descent
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
77
217
0
29 May 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDLUQCV
84
808
0
07 Feb 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,666
0
04 Feb 2019
Agnostic Federated Learning
Agnostic Federated Learning
M. Mohri
Gary Sivek
A. Suresh
FedML
129
935
0
01 Feb 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
149
272
0
13 Jun 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
178
691
0
15 Nov 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
55
597
0
13 Apr 2017
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
138
1,899
0
08 Oct 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
246
886
0
06 Nov 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
133
115
0
12 Jun 2015
Expectation Propagation for approximate Bayesian inference
Expectation Propagation for approximate Bayesian inference
T. Minka
132
1,907
0
10 Jan 2013
1