ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.03791
  4. Cited By
How to Trust Your Diffusion Model: A Convex Optimization Approach to
  Conformal Risk Control

How to Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control

7 February 2023
Jacopo Teneggi
Matthew Tivnan
J. W. Stayman
Jeremias Sulam
    DiffM
ArXivPDFHTML

Papers citing "How to Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control"

29 / 29 papers shown
Title
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Jeffrey Wen
Rizwan Ahmad
Philip Schniter
26
0
0
14 May 2025
Conditional Conformal Risk Adaptation
Conditional Conformal Risk Adaptation
Rui Luo
Zhixin Zhou
MedIm
24
0
0
10 Apr 2025
Generative Uncertainty in Diffusion Models
Generative Uncertainty in Diffusion Models
Metod Jazbec
Eliot Wong-Toi
Guoxuan Xia
Dan Zhang
Eric T. Nalisnick
Stephan Mandt
DiffM
49
0
0
28 Feb 2025
Conformal Risk Control for Semantic Uncertainty Quantification in Computed Tomography
Jacopo Teneggi
J. W. Stayman
Jeremias Sulam
56
1
0
28 Feb 2025
pcaGAN: Improving Posterior-Sampling cGANs via Principal Component
  Regularization
pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization
Matthew Bendel
Rizwan Ahmad
P. Schniter
MedIm
DiffM
28
1
0
01 Nov 2024
Conformal Prediction: A Data Perspective
Conformal Prediction: A Data Perspective
Xiaofan Zhou
Baiting Chen
Yu Gui
Lu Cheng
85
3
0
09 Oct 2024
Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering
Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering
K. K.
Bernhard Schölkopf
Michael Muehlebach
30
0
0
02 Oct 2024
Single Trajectory Conformal Prediction
Single Trajectory Conformal Prediction
Brian Lee
Nikolai Matni
38
2
0
03 Jun 2024
Fast yet Safe: Early-Exiting with Risk Control
Fast yet Safe: Early-Exiting with Risk Control
Metod Jazbec
Alexander Timans
Tin Hadvzi Veljković
K. Sakmann
Dan Zhang
C. A. Naesseth
Eric T. Nalisnick
38
5
0
31 May 2024
Task-Driven Uncertainty Quantification in Inverse Problems via Conformal
  Prediction
Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction
Jeffrey Wen
Rizwan Ahmad
Philip Schniter
39
2
0
28 May 2024
CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators
CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators
Harry Zhang
Luca Carlone
3DH
66
1
0
27 May 2024
Conformal Semantic Image Segmentation: Post-hoc Quantification of
  Predictive Uncertainty
Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty
Luca Mossina
Joseba Dalmau
Léo Andéol
UQCV
40
12
0
16 Apr 2024
Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free
  Prediction
Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction
Drew T. Nguyen
Reese Pathak
Anastasios Nikolas Angelopoulos
Stephen Bates
Michael I. Jordan
37
1
0
28 Mar 2024
Uncertainty quantification for probabilistic machine learning in earth
  observation using conformal prediction
Uncertainty quantification for probabilistic machine learning in earth observation using conformal prediction
Geethen Singh
Glenn Moncrieff
Zander Venter
Kerry Cawse-Nicholson
Jasper Slingsby
Tamara B. Robinson
26
13
0
12 Jan 2024
How Good Are Deep Generative Models for Solving Inverse Problems?
How Good Are Deep Generative Models for Solving Inverse Problems?
Shichong Peng
Alireza Moazeni
Ke Li
DiffM
16
0
0
20 Dec 2023
A Survey of Emerging Applications of Diffusion Probabilistic Models in
  MRI
A Survey of Emerging Applications of Diffusion Probabilistic Models in MRI
Yuheng Fan
Hanxi Liao
Shiqi Huang
Yimin Luo
Huazhu Fu
Haikun Qi
MedIm
35
18
0
19 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Conformal Prediction for Deep Classifier via Label Ranking
Conformal Prediction for Deep Classifier via Label Ranking
Jianguo Huang
Huajun Xi
Linjun Zhang
Huaxiu Yao
Yue Qiu
Hongxin Wei
39
21
0
10 Oct 2023
Non-Exchangeable Conformal Risk Control
Non-Exchangeable Conformal Risk Control
António Farinhas
Chrysoula Zerva
Dennis Ulmer
André F. T. Martins
16
9
0
02 Oct 2023
Conformal Language Modeling
Conformal Language Modeling
Victor Quach
Adam Fisch
Tal Schuster
Adam Yala
J. Sohn
Tommi Jaakkola
Regina Barzilay
77
55
0
16 Jun 2023
Principal Uncertainty Quantification with Spatial Correlation for Image
  Restoration Problems
Principal Uncertainty Quantification with Spatial Correlation for Image Restoration Problems
Omer Belhasin
Yaniv Romano
Daniel Freedman
Ehud Rivlin
Michael Elad
33
22
0
17 May 2023
Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and
  Text-to-Image Diffusion Models
Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models
Jiale Xu
Xintao Wang
Weihao Cheng
Yan-Pei Cao
Ying Shan
Xiaohu Qie
Shenghua Gao
188
161
0
28 Dec 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
139
410
0
04 Oct 2022
Diffusion Models in Vision: A Survey
Diffusion Models in Vision: A Survey
Florinel-Alin Croitoru
Vlad Hondru
Radu Tudor Ionescu
M. Shah
DiffM
VLM
MedIm
194
1,143
0
10 Sep 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,302
0
02 Sep 2022
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
  Control
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
97
125
0
03 Oct 2021
Distribution-Free, Risk-Controlling Prediction Sets
Distribution-Free, Risk-Controlling Prediction Sets
Stephen Bates
Anastasios Nikolas Angelopoulos
Lihua Lei
Jitendra Malik
Michael I. Jordan
OOD
181
185
0
07 Jan 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Cross-conformal predictors
Cross-conformal predictors
V. Vovk
131
196
0
03 Aug 2012
1