Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.03472
Cited By
On the Theories Behind Hard Negative Sampling for Recommendation
7 February 2023
Wentao Shi
Jiawei Chen
Fuli Feng
Jizhi Zhang
Junkang Wu
Chongming Gao
Xiangnan He
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Theories Behind Hard Negative Sampling for Recommendation"
6 / 6 papers shown
Title
Debias Can be Unreliable: Mitigating Bias Issue in Evaluating Debiasing Recommendation
Chengbing Wang
Wentao Shi
Jizhi Zhang
Wenjie Wang
Hang Pan
Fuli Feng
123
1
0
07 Sep 2024
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
68
30
0
01 Mar 2022
DORO: Distributional and Outlier Robust Optimization
Runtian Zhai
Chen Dan
J. Zico Kolter
Pradeep Ravikumar
33
60
0
11 Jun 2021
Boosting the Speed of Entity Alignment 10*: Dual Attention Matching Network with Normalized Hard Sample Mining
Xin Mao
Wenting Wang
Yuanbin Wu
Man Lan
33
111
0
29 Mar 2021
Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
56
212
0
12 Oct 2020
Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering
Jingtao Ding
Yuhan Quan
Quanming Yao
Yong Li
Depeng Jin
31
100
0
07 Sep 2020
1