ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02904
  4. Cited By
Rethinking Gauss-Newton for learning over-parameterized models
v1v2v3 (latest)

Rethinking Gauss-Newton for learning over-parameterized models

6 February 2023
Michael Arbel
Romain Menegaux
Pierre Wolinski
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Rethinking Gauss-Newton for learning over-parameterized models"

3 / 3 papers shown
Title
A Riemannian Optimization Perspective of the Gauss-Newton Method for Feedforward Neural Networks
A Riemannian Optimization Perspective of the Gauss-Newton Method for Feedforward Neural Networks
Semih Cayci
160
0
0
18 Dec 2024
Exact Gauss-Newton Optimization for Training Deep Neural Networks
Exact Gauss-Newton Optimization for Training Deep Neural Networks
Mikalai Korbit
Adeyemi Damilare Adeoye
Alberto Bemporad
Mario Zanon
ODL
66
1
0
23 May 2024
Regularized Gauss-Newton for Optimizing Overparameterized Neural
  Networks
Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks
Adeyemi Damilare Adeoye
Philipp Christian Petersen
Alberto Bemporad
72
1
0
23 Apr 2024
1