Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.02774
Cited By
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
6 February 2023
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The SSL Interplay: Augmentations, Inductive Bias, and Generalization"
31 / 31 papers shown
Title
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
40
0
0
17 Apr 2025
The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound
Blake Vanberlo
Alexander Wong
Jesse Hoey
R. Arntfield
41
0
0
10 Apr 2025
Exploring Disparity-Accuracy Trade-offs in Face Recognition Systems: The Role of Datasets, Architectures, and Loss Functions
S. Jaiswal
Sagnik Basu
Sandipan Sikdar
Animesh Mukherjee
46
0
0
18 Mar 2025
ConceptVAE: Self-Supervised Fine-Grained Concept Disentanglement from 2D Echocardiographies
C. Ciușdel
Alex Serban
Tiziano Passerini
CoGe
74
1
0
03 Feb 2025
Infinite Width Limits of Self Supervised Neural Networks
Maximilian Fleissner
Gautham Govind Anil
D. Ghoshdastidar
SSL
145
0
0
17 Nov 2024
OOD-Chameleon: Is Algorithm Selection for OOD Generalization Learnable?
Liangze Jiang
Damien Teney
OODD
OOD
28
1
0
03 Oct 2024
A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification
Markus Marks
Manuel Knott
Neehar Kondapaneni
Elijah Cole
T. Defraeye
Fernando Pérez-Cruz
Pietro Perona
SSL
45
2
0
16 Jul 2024
Disentangling Masked Autoencoders for Unsupervised Domain Generalization
An Zhang
Han Wang
Xiang Wang
Tat-Seng Chua
49
0
0
10 Jul 2024
PhiNets: Brain-inspired Non-contrastive Learning Based on Temporal Prediction Hypothesis
Satoki Ishikawa
Makoto Yamada
Han Bao
Yuki Takezawa
66
0
0
23 May 2024
When can we Approximate Wide Contrastive Models with Neural Tangent Kernels and Principal Component Analysis?
Gautham Govind Anil
P. Esser
D. Ghoshdastidar
40
1
0
13 Mar 2024
Graph Inference Acceleration by Learning MLPs on Graphs without Supervision
Zehong Wang
Zheyuan Zhang
Chuxu Zhang
Yanfang Ye
29
5
0
14 Feb 2024
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
23
2
0
01 Feb 2024
Memorization in Self-Supervised Learning Improves Downstream Generalization
Wenhao Wang
Muhammad Ahmad Kaleem
Adam Dziedzic
Michael Backes
Nicolas Papernot
Franziska Boenisch
SSL
19
9
0
19 Jan 2024
GPS-SSL: Guided Positive Sampling to Inject Prior Into Self-Supervised Learning
Aarash Feizi
Randall Balestriero
Adriana Romero Soriano
Reihaneh Rabbany
26
0
0
03 Jan 2024
Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift
Saurabh Garg
Amrith Rajagopal Setlur
Zachary Chase Lipton
Sivaraman Balakrishnan
Virginia Smith
Aditi Raghunathan
SSL
30
6
0
06 Dec 2023
Training Dynamics of Deep Network Linear Regions
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
31
3
0
19 Oct 2023
Information Flow in Self-Supervised Learning
Zhiyuan Tan
Jingqin Yang
Weiran Huang
Yang Yuan
Yifan Zhang
SSL
30
13
0
29 Sep 2023
Representation Learning Dynamics of Self-Supervised Models
P. Esser
Satyaki Mukherjee
D. Ghoshdastidar
SSL
19
2
0
05 Sep 2023
Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls and Opportunities
L. Akoglu
Jaemin Yoo
30
1
0
28 Aug 2023
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon
Q. Garrido
Hannah Lawrence
Danyal Rehman
Yann LeCun
B. Kiani
SSL
27
25
0
11 Jul 2023
Novel Categories Discovery Via Constraints on Empirical Prediction Statistics
Zahid Hasan
A. Faridee
Masud Ahmed
S. Purushotham
H. Kwon
Hyungtae Lee
Nirmalya Roy
35
0
0
07 Jul 2023
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
Runtian Zhai
Bing Liu
Andrej Risteski
Zico Kolter
Pradeep Ravikumar
SSL
28
9
0
01 Jun 2023
The Galerkin method beats Graph-Based Approaches for Spectral Algorithms
Vivien A. Cabannes
Francis R. Bach
27
3
0
01 Jun 2023
Matrix Information Theory for Self-Supervised Learning
Yifan Zhang
Zhi-Hao Tan
Jingqin Yang
Weiran Huang
Yang Yuan
SSL
45
16
0
27 May 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
32
29
0
27 Mar 2023
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Vivien A. Cabannes
Léon Bottou
Yann LeCun
Randall Balestriero
42
13
0
27 Mar 2023
RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank
Q. Garrido
Randall Balestriero
Laurent Najman
Yann LeCun
SSL
48
72
0
05 Oct 2022
Joint Embedding Self-Supervised Learning in the Kernel Regime
B. Kiani
Randall Balestriero
Yubei Chen
S. Lloyd
Yann LeCun
SSL
43
13
0
29 Sep 2022
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
317
5,775
0
29 Apr 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Cleaning large correlation matrices: tools from random matrix theory
J. Bun
J. Bouchaud
M. Potters
32
262
0
25 Oct 2016
1