Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.01855
Cited By
From Robustness to Privacy and Back
3 February 2023
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"From Robustness to Privacy and Back"
10 / 10 papers shown
Title
A Game-theoretic Framework for Privacy-preserving Federated Learning
Xiaojin Zhang
Lixin Fan
Si-Yi Wang
Wenjie Li
Kai Chen
Qiang Yang
FedML
21
4
0
11 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
24
5
0
06 Feb 2023
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
18
49
0
09 Dec 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
33
21
0
01 Nov 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Jayshree Sarathy
Salil P. Vadhan
31
7
0
27 Jul 2022
Private Quantiles Estimation in the Presence of Atoms
Clément Lalanne
C. Gastaud
Nicolas Grislain
Aurélien Garivier
Rémi Gribonval
17
7
0
15 Feb 2022
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
53
75
0
18 Feb 2021
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
1