ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01385
  4. Cited By
Hyper-parameter Tuning for Fair Classification without Sensitive
  Attribute Access

Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access

2 February 2023
A. Veldanda
Ivan Brugere
Sanghamitra Dutta
Alan Mishler
S. Garg
ArXivPDFHTML

Papers citing "Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access"

7 / 7 papers shown
Title
Fairness Without Harm: An Influence-Guided Active Sampling Approach
Fairness Without Harm: An Influence-Guided Active Sampling Approach
Jinlong Pang
Jialu Wang
Zhaowei Zhu
Yuanshun Yao
Chen Qian
Yang Liu
TDI
46
2
0
20 Feb 2024
Simple and Fast Group Robustness by Automatic Feature Reweighting
Simple and Fast Group Robustness by Automatic Feature Reweighting
Shi Qiu
Andres Potapczynski
Pavel Izmailov
A. Wilson
OOD
62
53
0
19 Jun 2023
Can Querying for Bias Leak Protected Attributes? Achieving Privacy With
  Smooth Sensitivity
Can Querying for Bias Leak Protected Attributes? Achieving Privacy With Smooth Sensitivity
Faisal Hamman
Jiahao Chen
Sanghamitra Dutta
19
9
0
03 Nov 2022
Fairness via In-Processing in the Over-parameterized Regime: A
  Cautionary Tale
Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale
A. Veldanda
Ivan Brugere
Jiahao Chen
Sanghamitra Dutta
Alan Mishler
S. Garg
33
7
0
29 Jun 2022
Evaluating Fairness of Machine Learning Models Under Uncertain and
  Incomplete Information
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information
Pranjal Awasthi
Alex Beutel
Matthaeus Kleindessner
Jamie Morgenstern
Xuezhi Wang
FaML
54
55
0
16 Feb 2021
Understanding bias in facial recognition technologies
Understanding bias in facial recognition technologies
David Leslie
47
52
0
05 Oct 2020
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
1