103
1

Archetypal Analysis++: Rethinking the Initialization Strategy

Abstract

Archetypal analysis is a matrix factorization method with convexity constraints. Due to local minima, a good initialization is essential, but frequently used initialization methods yield either sub-optimal starting points or are prone to get stuck in poor local minima. In this paper, we propose archetypal analysis++ (AA++), a probabilistic initialization strategy for archetypal analysis that sequentially samples points based on their influence on the objective, similar to kk-means++. In fact, we argue that kk-means++ already approximates the proposed initialization method. Furthermore, we suggest to adapt an efficient Monte Carlo approximation of kk-means++ to AA++. In an extensive empirical evaluation of 13 real-world data sets of varying sizes and dimensionalities and considering two pre-processing strategies, we show that AA++ nearly always outperforms all baselines, including the most frequently used ones.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.