ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13622
  4. Cited By
Learning Data Representations with Joint Diffusion Models

Learning Data Representations with Joint Diffusion Models

31 January 2023
Kamil Deja
Tomasz Trzciñski
Jakub M. Tomczak
    DiffM
ArXivPDFHTML

Papers citing "Learning Data Representations with Joint Diffusion Models"

13 / 13 papers shown
Title
Noise Optimized Conditional Diffusion for Domain Adaptation
Noise Optimized Conditional Diffusion for Domain Adaptation
Lingkun Luo
Shiqiang Hu
Liming Luke Chen
DiffM
42
0
0
12 May 2025
SARA: Structural and Adversarial Representation Alignment for Training-efficient Diffusion Models
Hesen Chen
Junyan Wang
Zhiyu Tan
Hao Li
58
0
0
11 Mar 2025
Unleashing the Potential of Pre-Trained Diffusion Models for Generalizable Person Re-Identification
Unleashing the Potential of Pre-Trained Diffusion Models for Generalizable Person Re-Identification
Jiachen Li
Xiaojin Gong
DiffM
84
0
0
10 Feb 2025
Beyond Batch Learning: Global Awareness Enhanced Domain Adaptation
Lingkun Luo
Shiqiang Hu
Liming Luke Chen
89
0
0
10 Feb 2025
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Xiao Li
Zekai Zhang
Xiang Li
Siyi Chen
Zhihui Zhu
Peng Wang
Qing Qu
DiffM
51
0
0
09 Feb 2025
Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think
Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think
Sihyun Yu
Sangkyung Kwak
Huiwon Jang
Jongheon Jeong
Jonathan Huang
Jinwoo Shin
Saining Xie
OCL
70
64
0
09 Oct 2024
Diffusion Models and Representation Learning: A Survey
Diffusion Models and Representation Learning: A Survey
Michael Fuest
Pingchuan Ma
Ming Gui
Johannes S. Fischer
Vincent Tao Hu
Bjorn Ommer
DiffM
36
19
0
30 Jun 2024
Explaining latent representations of generative models with large
  multimodal models
Explaining latent representations of generative models with large multimodal models
Mengdan Zhu
Zhenke Liu
Bo Pan
Abhinav Angirekula
Liang Zhao
34
2
0
02 Feb 2024
Robust semi-supervised segmentation with timestep ensembling diffusion
  models
Robust semi-supervised segmentation with timestep ensembling diffusion models
Margherita Rosnati
Mélanie Roschewitz
Ben Glocker
MedIm
DiffM
50
4
0
13 Nov 2023
On the Design Fundamentals of Diffusion Models: A Survey
On the Design Fundamentals of Diffusion Models: A Survey
Ziyi Chang
G. Koulieris
Hubert P. H. Shum
DiffM
29
53
0
07 Jun 2023
$CrowdDiff$: Multi-hypothesis Crowd Density Estimation using Diffusion
  Models
CrowdDiffCrowdDiffCrowdDiff: Multi-hypothesis Crowd Density Estimation using Diffusion Models
Y. Ranasinghe
Nithin Gopalakrishnan Nair
W. G. C. Bandara
Vishal M. Patel
DiffM
26
10
0
22 Mar 2023
Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry Baranchuk
Ivan Rubachev
A. Voynov
Valentin Khrulkov
Artem Babenko
DiffM
VLM
195
516
0
06 Dec 2021
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
177
9,332
0
28 May 2015
1