Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.13569
Cited By
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
31 January 2023
Jianfeng Wang
Xiaolin Hu
Thomas Lukasiewicz
AAML
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning"
9 / 9 papers shown
Title
NP-Match: When Neural Processes meet Semi-Supervised Learning
Jianfeng Wang
Thomas Lukasiewicz
Daniela Massiceti
Xiaolin Hu
Vladimir Pavlovic
A. Neophytou
BDL
65
41
0
03 Jul 2022
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
255
862
0
15 Oct 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
241
509
0
15 Jan 2021
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
188
157
0
14 Dec 2020
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
262
656
0
23 Mar 2020
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
294
36,371
0
25 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Statistical exponential families: A digest with flash cards
Frank Nielsen
Vincent Garcia
85
183
0
25 Nov 2009
1