ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13370
  4. Cited By
On the Correctness of Automatic Differentiation for Neural Networks with
  Machine-Representable Parameters

On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters

31 January 2023
Wonyeol Lee
Sejun Park
A. Aiken
    PINN
ArXivPDFHTML

Papers citing "On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters"

2 / 2 papers shown
Title
On the numerical reliability of nonsmooth autodiff: a MaxPool case study
On the numerical reliability of nonsmooth autodiff: a MaxPool case study
Ryan Boustany
13
0
0
05 Jan 2024
Understanding Automatic Differentiation Pitfalls
Understanding Automatic Differentiation Pitfalls
Jan Huckelheim
Harshitha Menon
William S. Moses
Bruce Christianson
P. Hovland
Laurent Hascoet
PINN
17
4
0
12 May 2023
1