ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13356
  4. Cited By
Inference Time Evidences of Adversarial Attacks for Forensic on
  Transformers

Inference Time Evidences of Adversarial Attacks for Forensic on Transformers

31 January 2023
Hugo Lemarchant
Liang Li
Yiming Qian
Yuta Nakashima
Hajime Nagahara
    ViT
    AAML
ArXivPDFHTML

Papers citing "Inference Time Evidences of Adversarial Attacks for Forensic on Transformers"

33 / 33 papers shown
Title
Can CNNs Be More Robust Than Transformers?
Can CNNs Be More Robust Than Transformers?
Zeyu Wang
Yutong Bai
Yuyin Zhou
Cihang Xie
UQCV
OOD
47
46
0
07 Jun 2022
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
Y. Fu
Shunyao Zhang
Shan-Hung Wu
Cheng Wan
Yingyan Lin
AAML
43
67
0
16 Mar 2022
ViT-P: Rethinking Data-efficient Vision Transformers from Locality
ViT-P: Rethinking Data-efficient Vision Transformers from Locality
Bin Chen
Ran A. Wang
Di Ming
Xin Feng
ViT
36
7
0
04 Mar 2022
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
229
263
0
10 Nov 2021
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to
  CNNs
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs
Philipp Benz
Soomin Ham
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
ViT
74
79
0
06 Oct 2021
Do Vision Transformers See Like Convolutional Neural Networks?
Do Vision Transformers See Like Convolutional Neural Networks?
M. Raghu
Thomas Unterthiner
Simon Kornblith
Chiyuan Zhang
Alexey Dosovitskiy
ViT
106
949
0
19 Aug 2021
Learning to Detect Adversarial Examples Based on Class Scores
Learning to Detect Adversarial Examples Based on Class Scores
Tobias Uelwer
Félix D. P. Michels
Oliver De Candido
AAML
41
1
0
09 Jul 2021
How to train your ViT? Data, Augmentation, and Regularization in Vision
  Transformers
How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers
Andreas Steiner
Alexander Kolesnikov
Xiaohua Zhai
Ross Wightman
Jakob Uszkoreit
Lucas Beyer
ViT
105
629
0
18 Jun 2021
Intriguing Properties of Vision Transformers
Intriguing Properties of Vision Transformers
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Ming-Hsuan Yang
ViT
304
640
0
21 May 2021
Towards Robust Vision Transformer
Towards Robust Vision Transformer
Xiaofeng Mao
Gege Qi
YueFeng Chen
Xiaodan Li
Ranjie Duan
Shaokai Ye
Yuan He
Hui Xue
ViT
51
192
0
17 May 2021
Vision Transformers are Robust Learners
Vision Transformers are Robust Learners
Sayak Paul
Pin-Yu Chen
ViT
57
312
0
17 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
611
6,020
0
29 Apr 2021
On the Robustness of Vision Transformers to Adversarial Examples
On the Robustness of Vision Transformers to Adversarial Examples
Kaleel Mahmood
Rigel Mahmood
Marten van Dijk
ViT
98
224
0
31 Mar 2021
On the Adversarial Robustness of Vision Transformers
On the Adversarial Robustness of Vision Transformers
Rulin Shao
Zhouxing Shi
Jinfeng Yi
Pin-Yu Chen
Cho-Jui Hsieh
ViT
62
142
0
29 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
389
21,281
0
25 Mar 2021
Learning Defense Transformers for Counterattacking Adversarial Examples
Learning Defense Transformers for Counterattacking Adversarial Examples
Jincheng Li
Jingyun Liang
Yifan Zhang
Jian Chen
Mingkui Tan
AAML
55
2
0
13 Mar 2021
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier
  Domain
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain
P. Harder
Franz-Josef Pfreundt
Margret Keuper
J. Keuper
AAML
49
48
0
04 Mar 2021
Tokens-to-Token ViT: Training Vision Transformers from Scratch on
  ImageNet
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Li-xin Yuan
Yunpeng Chen
Tao Wang
Weihao Yu
Yujun Shi
Zihang Jiang
Francis E. H. Tay
Jiashi Feng
Shuicheng Yan
ViT
112
1,931
0
28 Jan 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
339
6,731
0
23 Dec 2020
A Survey on Visual Transformer
A Survey on Visual Transformer
Kai Han
Yunhe Wang
Hanting Chen
Xinghao Chen
Jianyuan Guo
...
Chunjing Xu
Yixing Xu
Zhaohui Yang
Yiman Zhang
Dacheng Tao
ViT
146
2,202
0
23 Dec 2020
Rethinking Attention with Performers
Rethinking Attention with Performers
K. Choromanski
Valerii Likhosherstov
David Dohan
Xingyou Song
Andreea Gane
...
Afroz Mohiuddin
Lukasz Kaiser
David Belanger
Lucy J. Colwell
Adrian Weller
163
1,570
0
30 Sep 2020
Similarity of Neural Network Representations Revisited
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
136
1,408
0
01 May 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.3K
94,511
0
11 Oct 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
92
1,407
0
08 Dec 2017
Efficient Defenses Against Adversarial Attacks
Efficient Defenses Against Adversarial Attacks
Valentina Zantedeschi
Maria-Irina Nicolae
Ambrish Rawat
AAML
40
297
0
21 Jul 2017
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Chen Sun
Abhinav Shrivastava
Saurabh Singh
Abhinav Gupta
VLM
147
2,393
0
10 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
257
12,029
0
19 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
580
130,942
0
12 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
115
1,854
0
20 May 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
214
8,533
0
16 Aug 2016
Early Methods for Detecting Adversarial Images
Early Methods for Detecting Adversarial Images
Dan Hendrycks
Kevin Gimpel
AAML
72
236
0
01 Aug 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
225
19,011
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
227
14,893
1
21 Dec 2013
1