ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12594
  4. Cited By
A theory of continuous generative flow networks
v1v2 (latest)

A theory of continuous generative flow networks

30 January 2023
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "A theory of continuous generative flow networks"

30 / 30 papers shown
Title
Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks
Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks
Sajan Muhammad
Salem Lahlou
15
0
0
19 Jun 2025
Adaptive Destruction Processes for Diffusion Samplers
Adaptive Destruction Processes for Diffusion Samplers
Timofei Gritsaev
Nikita Morozov
Kirill Tamogashev
D. Tiapkin
S. Samsonov
A. Naumov
Dmitry Vetrov
Nikolay Malkin
56
0
0
02 Jun 2025
On scalable and efficient training of diffusion samplers
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
147
0
0
26 May 2025
Energy-based generator matching: A neural sampler for general state space
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
97
0
0
26 May 2025
Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Adam Younsi
Abdalgader Abubaker
M. Seddik
Hakim Hacid
Salem Lahlou
LRM
237
1
0
28 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
184
3
0
16 Apr 2025
Learning to Sample Effective and Diverse Prompts for Text-to-Image Generation
Learning to Sample Effective and Diverse Prompts for Text-to-Image Generation
Taeyoung Yun
Dinghuai Zhang
Jinkyoo Park
Ling Pan
DiffM
108
6
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
244
2
0
11 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
157
8
0
10 Jan 2025
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets
Zhen Liu
Tim Z. Xiao
Weiyang Liu
Yoshua Bengio
Dinghuai Zhang
256
6
0
10 Dec 2024
Denoising Fisher Training For Neural Implicit Samplers
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
78
0
0
03 Nov 2024
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
485
7
0
02 Oct 2024
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
Dominic Phillips
F. Cipcigan
107
4
0
28 Aug 2024
Learning Dynamic Bayesian Networks from Data: Foundations, First
  Principles and Numerical Comparisons
Learning Dynamic Bayesian Networks from Data: Foundations, First Principles and Numerical Comparisons
Vyacheslav Kungurtsev
Fadwa Idlahcen
Petr Rysavý
Pavel Rytíř
Ales Wodecki
101
1
0
25 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
191
32
0
31 May 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
112
58
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
239
28
0
07 Feb 2024
Investigating Generalization Behaviours of Generative Flow Networks
Investigating Generalization Behaviours of Generative Flow Networks
Lazar Atanackovic
Emmanuel Bengio
AI4CE
91
4
0
07 Feb 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
86
3
0
06 Feb 2024
Evolution Guided Generative Flow Networks
Evolution Guided Generative Flow Networks
Zarif Ikram
Ling Pan
Dianbo Liu
156
1
0
03 Feb 2024
Pre-Training and Fine-Tuning Generative Flow Networks
Pre-Training and Fine-Tuning Generative Flow Networks
Ling Pan
Moksh Jain
Kanika Madan
Yoshua Bengio
111
13
0
05 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
125
49
0
04 Oct 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Weijian Luo
Boya Zhang
Zhihua Zhang
91
12
0
08 Jun 2023
torchgfn: A PyTorch GFlowNet library
torchgfn: A PyTorch GFlowNet library
Salem Lahlou
J. Viviano
Victor Schmidt
Yoshua Bengio
AI4CE
53
5
0
24 May 2023
Generative Flow Networks for Precise Reward-Oriented Active Learning on
  Graphs
Generative Flow Networks for Precise Reward-Oriented Active Learning on Graphs
Yinchuan Li
Zhigang Li
Wenqian Li
Yunfeng Shao
Yan Zheng
Jianye Hao
83
3
0
24 Apr 2023
GFlowNets for AI-Driven Scientific Discovery
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
97
55
0
01 Feb 2023
Latent State Marginalization as a Low-cost Approach for Improving
  Exploration
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Dinghuai Zhang
Aaron Courville
Yoshua Bengio
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen
OOD
101
10
0
03 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
231
89
0
02 Oct 2022
Unifying Generative Models with GFlowNets and Beyond
Unifying Generative Models with GFlowNets and Beyond
Dinghuai Zhang
Ricky T. Q. Chen
Nikolay Malkin
Yoshua Bengio
BDLAI4CE
120
26
0
06 Sep 2022
GFlowNet Foundations
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
109
240
0
17 Nov 2021
1