Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.11989
Cited By
Practical Differentially Private Hyperparameter Tuning with Subsampling
27 January 2023
A. Koskela
Tejas D. Kulkarni
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Differentially Private Hyperparameter Tuning with Subsampling"
17 / 17 papers shown
Title
The Importance of Being Discrete: Measuring the Impact of Discretization in End-to-End Differentially Private Synthetic Data
Georgi Ganev
Meenatchi Sundaram Muthu Selva Annamalai
Sofiane Mahiou
Emiliano De Cristofaro
24
2
0
09 Apr 2025
Towards hyperparameter-free optimization with differential privacy
Zhiqi Bu
Ruixuan Liu
32
2
0
02 Mar 2025
LNUCB-TA: Linear-nonlinear Hybrid Bandit Learning with Temporal Attention
H. Khosravi
Mohammad Reza Shafie
Ahmed Shoyeb Raihan
Srinjoy Das
I. Imtiaz Ahmed
34
0
0
01 Mar 2025
DPDR: Gradient Decomposition and Reconstruction for Differentially Private Deep Learning
Yixuan Liu
Li Xiong
Yuhan Liu
Yujie Gu
Ruixuan Liu
Hong Chen
40
1
0
04 Jun 2024
How to Privately Tune Hyperparameters in Federated Learning? Insights from a Benchmark Study
Natalija Mitic
Apostolos Pyrgelis
Sinem Sav
FedML
58
1
0
25 Feb 2024
Revisiting Differentially Private Hyper-parameter Tuning
Zihang Xiang
Tianhao Wang
Cheng-Long Wang
Di Wang
34
6
0
20 Feb 2024
On the Impact of Output Perturbation on Fairness in Binary Linear Classification
Vitalii Emelianov
Michael Perrot
FaML
35
0
0
05 Feb 2024
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy
T. Shaik
Xiaohui Tao
Haoran Xie
Lin Li
Xiaofeng Zhu
Qingyuan Li
MU
36
25
0
10 May 2023
Improved Differentially Private Regression via Gradient Boosting
Shuai Tang
Sergul Aydore
Michael Kearns
Saeyoung Rho
Aaron Roth
Yichen Wang
Yu-Xiang Wang
Zhiwei Steven Wu
FedML
38
4
0
06 Mar 2023
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
64
49
0
02 Oct 2022
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection
Shubhankar Mohapatra
Sajin Sasy
Xi He
Gautam Kamath
Om Thakkar
114
32
0
09 Nov 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
135
120
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
168
350
0
25 Sep 2021
Making the Most of Parallel Composition in Differential Privacy
Joshua Smith
Hassan Jameel Asghar
Gianpaolo Gioiosa
Sirine Mrabet
Serge Gaspers
P. Tyler
28
10
0
19 Sep 2021
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Deep Model Training
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
A. De
Rishabh K. Iyer
OOD
94
189
0
27 Feb 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
154
0
26 Feb 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
147
178
0
28 Jul 2020
1