Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.11701
Cited By
TransNet: Transferable Neural Networks for Partial Differential Equations
27 January 2023
Zezhong Zhang
F. Bao
L. Ju
Guannan Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"TransNet: Transferable Neural Networks for Partial Differential Equations"
14 / 14 papers shown
Title
Random Feature Models for Learning Interacting Dynamical Systems
Yuxuan Liu
S. McCalla
Hayden Schaeffer
80
12
0
11 Dec 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
69
172
0
12 Feb 2022
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
121
421
0
06 Nov 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
63
58
0
21 Oct 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
97
699
0
19 Mar 2021
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
Craig Gin
D. Shea
Steven L. Brunton
J. Nathan Kutz
65
89
0
31 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
500
2,414
0
18 Oct 2020
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
Colby Wight
Jia Zhao
77
225
0
09 Jul 2020
Transfer learning based multi-fidelity physics informed deep neural network
S. Chakraborty
PINN
OOD
AI4CE
72
165
0
19 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
100
174
0
23 Apr 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,131
0
08 Oct 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
97
1,533
0
10 Jul 2019
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
46
756
0
26 Oct 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
121
1,387
0
30 Sep 2017
1