ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.10123
  4. Cited By
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation

Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation

24 January 2023
Henry B. Moss
Sebastian W. Ober
Victor Picheny
ArXivPDFHTML

Papers citing "Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation"

13 / 13 papers shown
Title
Gradient-based Sample Selection for Faster Bayesian Optimization
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
46
0
0
10 Apr 2025
Global Safe Sequential Learning via Efficient Knowledge Transfer
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
70
2
0
22 Feb 2024
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Paul E. Chang
Prakhar Verma
S. T. John
Victor Picheny
Henry B. Moss
Arno Solin
GP
55
6
0
02 Nov 2022
Multi-Objective Bayesian Optimization over High-Dimensional Search
  Spaces
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
52
108
0
22 Sep 2021
MUMBO: MUlti-task Max-value Bayesian Optimization
MUMBO: MUlti-task Max-value Bayesian Optimization
Henry B. Moss
David S. Leslie
Paul Rayson
44
34
0
22 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
27
35
0
09 Jun 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
36
163
0
21 Feb 2020
Bayesian Quantile and Expectile Optimisation
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
22
21
0
12 Jan 2020
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
79
458
0
03 Oct 2019
Predictive Entropy Search for Efficient Global Optimization of Black-box
  Functions
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
82
646
0
10 Jun 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
91
1,226
0
26 Sep 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
80
1,178
0
02 Nov 2012
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
216
1,130
0
25 Jul 2012
1