Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.09879
Cited By
Data Augmentation Alone Can Improve Adversarial Training
24 January 2023
Lin Li
Michael W. Spratling
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Augmentation Alone Can Improve Adversarial Training"
32 / 32 papers shown
Title
ZeroPur: Succinct Training-Free Adversarial Purification
Xiuli Bi
Zonglin Yang
Bo Liu
Xiaodong Cun
Chi-Man Pun
75
0
0
05 Jun 2024
Understanding and Combating Robust Overfitting via Input Loss Landscape Analysis and Regularization
Lin Li
Michael W. Spratling
AAML
66
35
0
09 Dec 2022
Understanding Robust Overfitting of Adversarial Training and Beyond
Chaojian Yu
Bo Han
Li Shen
Jun Yu
Chen Gong
Biwei Huang
Tongliang Liu
OOD
61
60
0
17 Jun 2022
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
53
285
0
09 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
66
110
0
26 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
66
299
0
18 Oct 2021
Exploring Memorization in Adversarial Training
Yinpeng Dong
Ke Xu
Xiao Yang
Tianyu Pang
Zhijie Deng
Hang Su
Jun Zhu
TDI
51
73
0
03 Jun 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
76
129
0
19 Apr 2021
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
Samuel G. Müller
Frank Hutter
ViT
MQ
49
287
0
18 Mar 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
61
61
0
08 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
Soheil Feizi
AAML
56
47
0
15 Feb 2021
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
47
331
0
07 Oct 2020
Torchattacks: A PyTorch Repository for Adversarial Attacks
Hoki Kim
68
204
0
24 Sep 2020
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
68
288
0
06 Jul 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
94
800
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
70
69
0
25 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
61
64
0
11 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
361
42,299
0
03 Dec 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
119
751
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
68
333
0
31 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
604
4,766
0
13 May 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
67
726
0
28 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
127
2,542
0
24 Jan 2019
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
789
0
30 Apr 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Random Erasing Data Augmentation
Zhun Zhong
Liang Zheng
Guoliang Kang
Shaozi Li
Yi Yang
90
3,630
0
16 Aug 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
107
3,758
0
15 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
269
12,029
0
19 Jun 2017
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
312
7,971
0
23 May 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
330
10,172
0
16 Mar 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
1