ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.09879
  4. Cited By
Data Augmentation Alone Can Improve Adversarial Training

Data Augmentation Alone Can Improve Adversarial Training

24 January 2023
Lin Li
Michael W. Spratling
ArXivPDFHTML

Papers citing "Data Augmentation Alone Can Improve Adversarial Training"

32 / 32 papers shown
Title
ZeroPur: Succinct Training-Free Adversarial Purification
ZeroPur: Succinct Training-Free Adversarial Purification
Xiuli Bi
Zonglin Yang
Bo Liu
Xiaodong Cun
Chi-Man Pun
75
0
0
05 Jun 2024
Understanding and Combating Robust Overfitting via Input Loss Landscape
  Analysis and Regularization
Understanding and Combating Robust Overfitting via Input Loss Landscape Analysis and Regularization
Lin Li
Michael W. Spratling
AAML
66
35
0
09 Dec 2022
Understanding Robust Overfitting of Adversarial Training and Beyond
Understanding Robust Overfitting of Adversarial Training and Beyond
Chaojian Yu
Bo Han
Li Shen
Jun Yu
Chen Gong
Biwei Huang
Tongliang Liu
OOD
61
60
0
17 Jun 2022
Data Augmentation Can Improve Robustness
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
53
285
0
09 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust
  Training
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
66
110
0
26 Oct 2021
Improving Robustness using Generated Data
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
66
299
0
18 Oct 2021
Exploring Memorization in Adversarial Training
Exploring Memorization in Adversarial Training
Yinpeng Dong
Ke Xu
Xiao Yang
Tianyu Pang
Zhijie Deng
Hang Su
Jun Zhu
TDI
51
73
0
03 Jun 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve
  Adversarial Robustness?
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
76
129
0
19 Apr 2021
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
Samuel G. Müller
Frank Hutter
ViT
MQ
49
287
0
18 Mar 2021
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
61
61
0
08 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
Soheil Feizi
AAML
56
47
0
15 Feb 2021
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
47
331
0
07 Oct 2020
Torchattacks: A PyTorch Repository for Adversarial Attacks
Torchattacks: A PyTorch Repository for Adversarial Attacks
Hoki Kim
68
204
0
24 Sep 2020
Understanding and Improving Fast Adversarial Training
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
68
288
0
06 Jul 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Overfitting in adversarially robust deep learning
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
94
800
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help,
  Double Descend, or Hurt Generalization
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
70
69
0
25 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
61
64
0
11 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
361
42,299
0
03 Dec 2019
Unlabeled Data Improves Adversarial Robustness
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
119
751
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
68
333
0
31 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
604
4,766
0
13 May 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
67
726
0
28 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
127
2,542
0
24 Jan 2019
Adversarially Robust Generalization Requires More Data
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
789
0
30 Apr 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Random Erasing Data Augmentation
Random Erasing Data Augmentation
Zhun Zhong
Liang Zheng
Guoliang Kang
Shaozi Li
Yi Yang
90
3,630
0
16 Aug 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
107
3,758
0
15 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
269
12,029
0
19 Jun 2017
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
312
7,971
0
23 May 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
330
10,172
0
16 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
1