ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.08215
  4. Cited By
Tight Guarantees for Interactive Decision Making with the
  Decision-Estimation Coefficient

Tight Guarantees for Interactive Decision Making with the Decision-Estimation Coefficient

19 January 2023
Dylan J. Foster
Noah Golowich
Yanjun Han
    OffRL
ArXivPDFHTML

Papers citing "Tight Guarantees for Interactive Decision Making with the Decision-Estimation Coefficient"

24 / 24 papers shown
Title
Evolution of Information in Interactive Decision Making: A Case Study for Multi-Armed Bandits
Yuzhou Gu
Yanjun Han
Jian Qian
31
0
0
01 Mar 2025
Near-Optimal Private Learning in Linear Contextual Bandits
Near-Optimal Private Learning in Linear Contextual Bandits
Fan Chen
Jiachun Li
Alexander Rakhlin
D. Simchi-Levi
46
1
0
18 Feb 2025
Decision Making in Hybrid Environments: A Model Aggregation Approach
Decision Making in Hybrid Environments: A Model Aggregation Approach
Haolin Liu
Chen-Yu Wei
Julian Zimmert
86
0
0
09 Feb 2025
A Complete Characterization of Learnability for Stochastic Noisy Bandits
A Complete Characterization of Learnability for Stochastic Noisy Bandits
Steve Hanneke
Kun Wang
35
0
0
20 Jan 2025
Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound
  Framework and Characterization for Bandit Learnability
Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability
Fan Chen
Dylan J. Foster
Yanjun Han
Jian Qian
Alexander Rakhlin
Yunbei Xu
33
1
0
07 Oct 2024
Misspecified $Q$-Learning with Sparse Linear Function Approximation:
  Tight Bounds on Approximation Error
Misspecified QQQ-Learning with Sparse Linear Function Approximation: Tight Bounds on Approximation Error
Ally Yalei Du
Lin F. Yang
Ruosong Wang
37
0
0
18 Jul 2024
Exploratory Preference Optimization: Harnessing Implicit
  Q*-Approximation for Sample-Efficient RLHF
Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF
Tengyang Xie
Dylan J. Foster
Akshay Krishnamurthy
Corby Rosset
Ahmed Hassan Awadallah
Alexander Rakhlin
49
33
0
31 May 2024
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with
  General Function Approximation
Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation
Jianliang He
Han Zhong
Zhuoran Yang
38
6
0
19 Apr 2024
Provable Interactive Learning with Hindsight Instruction Feedback
Provable Interactive Learning with Hindsight Instruction Feedback
Dipendra Kumar Misra
Aldo Pacchiano
Rob Schapire
44
1
0
14 Apr 2024
Regret Minimization via Saddle Point Optimization
Regret Minimization via Saddle Point Optimization
Johannes Kirschner
Seyed Alireza Bakhtiari
Kushagra Chandak
Volodymyr Tkachuk
Csaba Szepesvári
33
1
0
15 Mar 2024
Optimistic Information Directed Sampling
Optimistic Information Directed Sampling
Gergely Neu
Matteo Papini
Ludovic Schwartz
44
2
0
23 Feb 2024
On the Performance of Empirical Risk Minimization with Smoothed Data
On the Performance of Empirical Risk Minimization with Smoothed Data
Adam Block
Alexander Rakhlin
Abhishek Shetty
39
3
0
22 Feb 2024
Stochastic contextual bandits with graph feedback: from independence
  number to MAS number
Stochastic contextual bandits with graph feedback: from independence number to MAS number
Yuxiao Wen
Yanjun Han
Zhengyuan Zhou
34
1
0
12 Feb 2024
Horizon-Free and Instance-Dependent Regret Bounds for Reinforcement
  Learning with General Function Approximation
Horizon-Free and Instance-Dependent Regret Bounds for Reinforcement Learning with General Function Approximation
Jiayi Huang
Han Zhong
Liwei Wang
Lin F. Yang
35
2
0
07 Dec 2023
When is Agnostic Reinforcement Learning Statistically Tractable?
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
27
5
0
09 Oct 2023
Bayesian Design Principles for Frequentist Sequential Learning
Bayesian Design Principles for Frequentist Sequential Learning
Yunbei Xu
A. Zeevi
24
11
0
01 Oct 2023
Efficient Model-Free Exploration in Low-Rank MDPs
Efficient Model-Free Exploration in Low-Rank MDPs
Zakaria Mhammedi
Adam Block
Dylan J. Foster
Alexander Rakhlin
OffRL
24
13
0
08 Jul 2023
Theoretical Hardness and Tractability of POMDPs in RL with Partial
  Online State Information
Theoretical Hardness and Tractability of POMDPs in RL with Partial Online State Information
Ming Shi
Yingbin Liang
Ness B. Shroff
29
2
0
14 Jun 2023
Maximize to Explore: One Objective Function Fusing Estimation, Planning,
  and Exploration
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration
Zhihan Liu
Miao Lu
Wei Xiong
Han Zhong
Haotian Hu
Shenao Zhang
Sirui Zheng
Zhuoran Yang
Zhaoran Wang
OffRL
32
22
0
29 May 2023
Tight Bounds for $γ$-Regret via the Decision-Estimation Coefficient
Tight Bounds for γγγ-Regret via the Decision-Estimation Coefficient
Margalit Glasgow
Alexander Rakhlin
OffRL
19
0
0
06 Mar 2023
Statistical Complexity and Optimal Algorithms for Non-linear Ridge
  Bandits
Statistical Complexity and Optimal Algorithms for Non-linear Ridge Bandits
Nived Rajaraman
Yanjun Han
Jiantao Jiao
Kannan Ramchandran
19
1
0
12 Feb 2023
Model-Free Reinforcement Learning with the Decision-Estimation
  Coefficient
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J. Foster
Noah Golowich
Jian Qian
Alexander Rakhlin
Ayush Sekhari
OffRL
32
9
0
25 Nov 2022
Provably Efficient Reinforcement Learning with Linear Function
  Approximation Under Adaptivity Constraints
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
122
166
0
06 Jan 2021
Kernel-based methods for bandit convex optimization
Kernel-based methods for bandit convex optimization
Sébastien Bubeck
Ronen Eldan
Y. Lee
81
163
0
11 Jul 2016
1