Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.06989
Cited By
v1
v2 (latest)
Negative Flux Aggregation to Estimate Feature Attributions
17 January 2023
X. Li
Deng Pan
Chengyin Li
Yao Qiang
D. Zhu
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Github (3★)
Papers citing
"Negative Flux Aggregation to Estimate Feature Attributions"
22 / 22 papers shown
Title
Interpretability-Aware Vision Transformer
Yao Qiang
Chengyin Li
Prashant Khanduri
D. Zhu
ViT
221
8
0
14 Sep 2023
Fast Axiomatic Attribution for Neural Networks
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
39
38
0
15 Nov 2021
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
A. Kapishnikov
Subhashini Venugopalan
Besim Avci
Benjamin D. Wedin
Michael Terry
Tolga Bolukbasi
97
95
0
17 Jun 2021
Explaining a Series of Models by Propagating Shapley Values
Hugh Chen
Scott M. Lundberg
Su-In Lee
TDI
FAtt
68
129
0
30 Apr 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
72
59
0
25 Feb 2021
Transformer Interpretability Beyond Attention Visualization
Hila Chefer
Shir Gur
Lior Wolf
137
664
0
17 Dec 2020
Improving Adversarial Robustness via Probabilistically Compact Loss with Logit Constraints
X. Li
Xiangrui Li
Deng Pan
D. Zhu
AAML
43
17
0
14 Dec 2020
Investigating Saturation Effects in Integrated Gradients
Vivek Miglani
Narine Kokhlikyan
B. Alsallakh
Miguel Martin
Orion Reblitz-Richardson
FAtt
84
26
0
23 Oct 2020
XRAI: Better Attributions Through Regions
A. Kapishnikov
Tolga Bolukbasi
Fernanda Viégas
Michael Terry
FAtt
XAI
59
212
0
06 Jun 2019
Full-Gradient Representation for Neural Network Visualization
Suraj Srinivas
François Fleuret
MILM
FAtt
77
274
0
02 May 2019
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
111
682
0
28 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,171
0
19 Jun 2018
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
204
2,226
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
201
3,873
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
737
0
08 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
883
27,373
0
02 Dec 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,386
0
04 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,308
0
20 Dec 2013
1