Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.06676
Cited By
Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life
17 January 2023
Kazuma Kobayashi
S. B. Alam
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life"
13 / 13 papers shown
Title
Recent Advances in Uncertainty Quantification Methods for Engineering Problems
Dinesh Kumar
Farid Ahmed
S. Usman
A. Alajo
S. B. Alam
91
8
0
06 Nov 2022
Uncertainty Quantification and Sensitivity analysis for Digital Twin Enabling Technology: Application for BISON Fuel Performance Code
Kazuma Kobayashi
Dinesh Kumar
M. Bonney
S. Chakraborty
Kyle Paaren
S. B. Alam
27
9
0
14 Oct 2022
Surrogate Modeling-Driven Physics-Informed Multi-fidelity Kriging: Path Forward to Digital Twin Enabling Simulation for Accident Tolerant Fuel
Kazuma Kobayashi
James Daniell
S. Usman
Dinesh Kumar
S. B. Alam
AI4CE
39
7
0
13 Oct 2022
Leveraging Industry 4.0 -- Deep Learning, Surrogate Model and Transfer Learning with Uncertainty Quantification Incorporated into Digital Twin for Nuclear System
M. Rahman
Abid Khan
Sayeed Anowar
Md. Al Imran
Richa Verma
Dinesh Kumar
Kazuma Kobayashi
S. B. Alam
AI4CE
42
15
0
30 Sep 2022
An Explainable Regression Framework for Predicting Remaining Useful Life of Machines
Talhat Khan
Kashif Ahmad
Jebran Khan
Imran Khan
Nasir Ahmad
86
13
0
28 Apr 2022
Designing Inherently Interpretable Machine Learning Models
Agus Sudjianto
Aijun Zhang
FaML
31
31
0
02 Nov 2021
Physics-integrated hybrid framework for model form error identification in nonlinear dynamical systems
Shailesh Garg
S. Chakraborty
B. Hazra
66
20
0
01 Sep 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
77
695
0
19 Mar 2021
Explainable AI for Interpretable Credit Scoring
Lara Marie Demajo
Vince Vella
A. Dingli
59
38
0
03 Dec 2020
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
135
128
0
16 Mar 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
216
2,108
0
08 Oct 2019
Metrics for Explainable AI: Challenges and Prospects
R. Hoffman
Shane T. Mueller
Gary Klein
Jordan Litman
XAI
74
727
0
11 Dec 2018
Model-Agnostic Interpretability of Machine Learning
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
84
838
0
16 Jun 2016
1