Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.05816
Cited By
v1
v2
v3
v4 (latest)
Understanding the Spectral Bias of Coordinate Based MLPs Via Training Dynamics
14 January 2023
J. Lazzari
Xiuwen Liu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding the Spectral Bias of Coordinate Based MLPs Via Training Dynamics"
22 / 22 papers shown
Title
Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression
Aku Kammonen
Anamika Pandey
E. von Schwerin
Raúl Tempone
60
0
0
08 Oct 2024
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
126
2,440
0
18 Jun 2020
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
B. Mildenhall
Pratul P. Srinivasan
Matthew Tancik
Jonathan T. Barron
R. Ramamoorthi
Ren Ng
129
2,592
0
19 Mar 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
84
185
0
10 Mar 2020
Empirical Studies on the Properties of Linear Regions in Deep Neural Networks
Xiao Zhang
Dongrui Wu
50
38
0
04 Jan 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
106
219
0
03 Dec 2019
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin
David Rolnick
84
228
0
03 Jun 2019
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies
Ronen Basri
David Jacobs
Yoni Kasten
S. Kritchman
80
218
0
02 Jun 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
59
104
0
15 Apr 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
129
94
0
28 Jan 2019
Complexity of Linear Regions in Deep Networks
Boris Hanin
David Rolnick
49
234
0
25 Jan 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
124
519
0
19 Jan 2019
Occupancy Networks: Learning 3D Reconstruction in Function Space
L. Mescheder
Michael Oechsle
Michael Niemeyer
Sebastian Nowozin
Andreas Geiger
3DV
251
2,907
0
10 Dec 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,455
0
22 Jun 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
95
441
0
23 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
162
1,259
0
27 Jun 2017
The Shattered Gradients Problem: If resnets are the answer, then what is the question?
David Balduzzi
Marcus Frean
Lennox Leary
J. P. Lewis
Kurt Wan-Duo Ma
Brian McWilliams
ODL
73
406
0
28 Feb 2017
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
63
790
0
16 Jun 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,312
0
22 Dec 2014
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
96
1,256
0
08 Feb 2014
On the number of response regions of deep feed forward networks with piece-wise linear activations
Razvan Pascanu
Guido Montúfar
Yoshua Bengio
FAtt
121
257
0
20 Dec 2013
1