ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.04272
  4. Cited By
Data Distillation: A Survey

Data Distillation: A Survey

11 January 2023
Noveen Sachdeva
Julian McAuley
    DD
ArXivPDFHTML

Papers citing "Data Distillation: A Survey"

17 / 67 papers shown
Title
Towards Trustworthy Dataset Distillation
Towards Trustworthy Dataset Distillation
Shijie Ma
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
DD
35
14
0
18 Jul 2023
Distilled Pruning: Using Synthetic Data to Win the Lottery
Distilled Pruning: Using Synthetic Data to Win the Lottery
Luke McDermott
Daniel Cummings
SyDa
DD
32
1
0
07 Jul 2023
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale
  From A New Perspective
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective
Zeyuan Yin
Eric P. Xing
Zhiqiang Shen
DD
20
63
0
22 Jun 2023
Structure-free Graph Condensation: From Large-scale Graphs to Condensed
  Graph-free Data
Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data
Xin Zheng
Miao Zhang
C. Chen
Quoc Viet Hung Nguyen
Xingquan Zhu
Shirui Pan
DD
36
59
0
05 Jun 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Dataset Distillation via Factorization
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
124
141
0
30 Oct 2022
Efficient Dataset Distillation Using Random Feature Approximation
Efficient Dataset Distillation Using Random Feature Approximation
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
DD
69
95
0
21 Oct 2022
Dataset Distillation Using Parameter Pruning
Dataset Distillation Using Parameter Pruning
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
34
20
0
29 Sep 2022
Graph Condensation via Receptive Field Distribution Matching
Graph Condensation via Receptive Field Distribution Matching
Mengyang Liu
Shanchuan Li
Xinshi Chen
Le Song
DD
71
45
0
28 Jun 2022
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
386
158
0
30 May 2022
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient
  Deep Model Training
GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Deep Model Training
Krishnateja Killamsetty
D. Sivasubramanian
Ganesh Ramakrishnan
A. De
Rishabh K. Iyer
OOD
88
188
0
27 Feb 2021
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
194
288
0
16 Feb 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
228
4,460
0
23 Jan 2020
Spatially-Aware Graph Neural Networks for Relational Behavior
  Forecasting from Sensor Data
Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data
Sergio Casas
Cole Gulino
Renjie Liao
R. Urtasun
AI4CE
174
211
0
18 Oct 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
317
4,203
0
23 Aug 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
99
716
0
13 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
302
11,681
0
09 Mar 2017
Previous
12