ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.03962
  4. Cited By
A Unified Theory of Diversity in Ensemble Learning

A Unified Theory of Diversity in Ensemble Learning

10 January 2023
Danny Wood
Tingting Mu
Andrew M. Webb
Henry W. J. Reeve
M. Luján
Gavin Brown
    UQCV
ArXivPDFHTML

Papers citing "A Unified Theory of Diversity in Ensemble Learning"

24 / 24 papers shown
Title
Mixture of Group Experts for Learning Invariant Representations
Mixture of Group Experts for Learning Invariant Representations
Lei Kang
Jia Li
Mi Tian
Hua Huang
MoE
33
0
0
12 Apr 2025
Imbalanced malware classification: an approach based on dynamic classifier selection
Imbalanced malware classification: an approach based on dynamic classifier selection
J. V. S. Souza
C. B. Vieira
G. D. C. Cunha
R. M. O. Cruz
47
0
0
30 Mar 2025
Uncertainty-Aware Decoding with Minimum Bayes Risk
Nico Daheim
Clara Meister
Thomas Möllenhoff
Iryna Gurevych
53
0
0
07 Mar 2025
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDL
UQCV
57
0
0
02 Mar 2025
Quantifying Correlations of Machine Learning Models
Quantifying Correlations of Machine Learning Models
Yuanyuan Li
Neeraj Sarna
Yang Lin
85
0
0
06 Feb 2025
Ex Uno Pluria: Insights on Ensembling in Low Precision Number Systems
Ex Uno Pluria: Insights on Ensembling in Low Precision Number Systems
G. Nam
Juho Lee
74
0
0
22 Nov 2024
Theoretical Aspects of Bias and Diversity in Minimum Bayes Risk Decoding
Theoretical Aspects of Bias and Diversity in Minimum Bayes Risk Decoding
Hidetaka Kamigaito
Hiroyuki Deguchi
Yusuke Sakai
Katsuhiko Hayashi
Taro Watanabe
41
1
0
19 Oct 2024
Understanding Model Ensemble in Transferable Adversarial Attack
Understanding Model Ensemble in Transferable Adversarial Attack
Wei Yao
Zeliang Zhang
Huayi Tang
Yong Liu
33
2
0
09 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
36
0
0
06 Oct 2024
EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting
  in Classification
EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification
Ben Dai
UQCV
29
0
0
02 Sep 2024
Learning to Explore for Stochastic Gradient MCMC
Learning to Explore for Stochastic Gradient MCMC
Seunghyun Kim
Seohyeon Jung
Seonghyeon Kim
Juho Lee
BDL
48
1
0
17 Aug 2024
Achieving More with Less: A Tensor-Optimization-Powered Ensemble Method
Achieving More with Less: A Tensor-Optimization-Powered Ensemble Method
Jinghui Yuan
Weijin Jiang
Zhe Cao
Fangyuan Xie
Rong Wang
Feiping Nie
Yuan Yuan
29
3
0
06 Aug 2024
Logifold: A Geometrical Foundation of Ensemble Machine Learning
Logifold: A Geometrical Foundation of Ensemble Machine Learning
Inkee Jung
Siu-Cheong Lau
FedML
AI4CE
27
1
0
23 Jul 2024
Using Uncertainty Quantification to Characterize and Improve
  Out-of-Domain Learning for PDEs
Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs
S. C. Mouli
Danielle C. Maddix
S. Alizadeh
Gaurav Gupta
Andrew Stuart
Michael W. Mahoney
Yuyang Wang
UQCV
AI4CE
40
2
0
15 Mar 2024
Towards a Systematic Approach to Design New Ensemble Learning Algorithms
Towards a Systematic Approach to Design New Ensemble Learning Algorithms
João Mendes-Moreira
Tiago Mendes-Neves
FedML
22
1
0
09 Feb 2024
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
Ossi Raisa
Antti Honkela
75
0
0
06 Feb 2024
Understanding and Improving Ensemble Adversarial Defense
Understanding and Improving Ensemble Adversarial Defense
Yian Deng
Tingting Mu
AAML
13
19
0
27 Oct 2023
Structured Radial Basis Function Network: Modelling Diversity for
  Multiple Hypotheses Prediction
Structured Radial Basis Function Network: Modelling Diversity for Multiple Hypotheses Prediction
Alejandro Rodriguez Dominguez
Muhammad Shahzad
Xia Hong
14
1
0
02 Sep 2023
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
28
4
0
17 Jul 2023
Online Ensemble of Models for Optimal Predictive Performance with
  Applications to Sector Rotation Strategy
Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy
Jiaju Miao
Pawel Polak
14
2
0
30 Mar 2023
Pathologies of Predictive Diversity in Deep Ensembles
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
38
13
0
01 Feb 2023
Adversarial Detection by Approximation of Ensemble Boundary
Adversarial Detection by Approximation of Ensemble Boundary
T. Windeatt
AAML
24
0
0
18 Nov 2022
LENAS: Learning-based Neural Architecture Search and Ensemble for 3D
  Radiotherapy Dose Prediction
LENAS: Learning-based Neural Architecture Search and Ensemble for 3D Radiotherapy Dose Prediction
Yi Lin
Yanfei Liu
Hao-tao Chen
Xin Yang
Kai Ma
Yefeng Zheng
Kwang-Ting Cheng
3DV
26
4
0
12 Jun 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1