Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.03125
Cited By
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
9 January 2023
Xiao-Tong Yuan
P. Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation"
40 / 40 papers shown
Title
Stability and Risk Bounds of Iterative Hard Thresholding
Xiao-Tong Yuan
P. Li
49
12
0
17 Mar 2022
Minibatch and Momentum Model-based Methods for Stochastic Weakly Convex Optimization
Qi Deng
Wenzhi Gao
47
14
0
06 Jun 2021
An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning
Blake E. Woodworth
Nathan Srebro
42
22
0
04 Jun 2021
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums
Kaiwen Zhou
Lai Tian
Anthony Man-Cho So
James Cheng
53
10
0
25 May 2021
Stability and Deviation Optimal Risk Bounds with Convergence Rate
O
(
1
/
n
)
O(1/n)
O
(
1/
n
)
Yegor Klochkov
Nikita Zhivotovskiy
58
62
0
22 Mar 2021
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
74
16
0
07 Jan 2021
Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent
Yunwen Lei
Yiming Ying
MLT
65
127
0
15 Jun 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
47
194
0
12 Jun 2020
Sharper bounds for uniformly stable algorithms
Olivier Bousquet
Yegor Klochkov
Nikita Zhivotovskiy
48
120
0
17 Oct 2019
On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond
Xiao-Tong Yuan
Ping Li
112
32
0
06 Aug 2019
A Generic Acceleration Framework for Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
53
43
0
03 Jun 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
214
993
0
01 Apr 2019
The importance of better models in stochastic optimization
Hilal Asi
John C. Duchi
38
73
0
20 Mar 2019
High probability generalization bounds for uniformly stable algorithms with nearly optimal rate
Vitaly Feldman
J. Vondrák
58
154
0
27 Feb 2019
Generalization Bounds for Uniformly Stable Algorithms
Vitaly Feldman
J. Vondrák
49
89
0
24 Dec 2018
Stochastic (Approximate) Proximal Point Methods: Convergence, Optimality, and Adaptivity
Hilal Asi
John C. Duchi
120
124
0
12 Oct 2018
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
72
376
0
17 Mar 2018
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
32
127
0
24 Mar 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
82
54
0
21 Feb 2017
Empirical Risk Minimization for Stochastic Convex Optimization:
O
(
1
/
n
)
O(1/n)
O
(
1/
n
)
- and
O
(
1
/
n
2
)
O(1/n^2)
O
(
1/
n
2
)
-type of Risk Bounds
Lijun Zhang
Tianbao Yang
Rong Jin
40
48
0
07 Feb 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
254
1,216
0
16 Aug 2016
The Landscape of Empirical Risk for Non-convex Losses
Song Mei
Yu Bai
Andrea Montanari
96
312
0
22 Jul 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
221
3,205
0
15 Jun 2016
Efficient Distributed Learning with Sparsity
Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
FedML
59
152
0
25 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
96
580
0
18 Mar 2016
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression
Aymeric Dieuleveut
Nicolas Flammarion
Francis R. Bach
ODL
51
226
0
17 Feb 2016
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
111
1,238
0
03 Sep 2015
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
67
56
0
10 May 2015
Competing with the Empirical Risk Minimizer in a Single Pass
Roy Frostig
Rong Ge
Sham Kakade
Aaron Sidford
69
100
0
20 Dec 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
82
353
0
04 Sep 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
150
738
0
19 Mar 2014
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
86
556
0
30 Dec 2013
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
151
767
0
26 Sep 2011
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
185
583
0
12 Sep 2011
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
416
1,378
0
13 Oct 2010
Optimistic Rates for Learning with a Smooth Loss
Nathan Srebro
Karthik Sridharan
Ambuj Tewari
153
282
0
20 Sep 2010
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
173
250
0
03 Sep 2010
High-dimensional generalized linear models and the lasso
Sara van de Geer
563
755
0
04 Apr 2008
Sparse Additive Models
Pradeep Ravikumar
John D. Lafferty
Han Liu
Larry A. Wasserman
427
574
0
28 Nov 2007
1