ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.01931
  4. Cited By
Reduced Deep Convolutional Activation Features (R-DeCAF) in
  Histopathology Images to Improve the Classification Performance for Breast
  Cancer Diagnosis

Reduced Deep Convolutional Activation Features (R-DeCAF) in Histopathology Images to Improve the Classification Performance for Breast Cancer Diagnosis

5 January 2023
Bahareh Morovati
Reza Lashgari
M. Hajihasani
Hasti Shabani
ArXivPDFHTML

Papers citing "Reduced Deep Convolutional Activation Features (R-DeCAF) in Histopathology Images to Improve the Classification Performance for Breast Cancer Diagnosis"

1 / 1 papers shown
Title
LoMAE: Low-level Vision Masked Autoencoders for Low-dose CT Denoising
LoMAE: Low-level Vision Masked Autoencoders for Low-dose CT Denoising
Dayang Wang
Yongshun Xu
Shuo Han
Zhan Wu
Li Zhou
Bahareh Morovati
Hengyong Yu
MedIm
43
2
0
19 Oct 2023
1