Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.01766
Cited By
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow
4 January 2023
Yuling Yan
Kaizheng Wang
Philippe Rigollet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow"
22 / 22 papers shown
Title
Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
Francesca R. Crucinio
Sahani Pathiraja
58
0
0
06 Jun 2025
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Haoxuan Chen
Yinuo Ren
Martin Renqiang Min
Lexing Ying
Zachary Izzo
DiffM
MedIm
77
2
0
04 Jun 2025
HAM: A Hyperbolic Step to Regulate Implicit Bias
Tom Jacobs
Advait Gadhikar
Celia Rubio-Madrigal
R. Burkholz
79
0
0
03 Jun 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
172
2
0
28 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
104
0
0
11 Jan 2025
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
159
1
0
31 Oct 2024
Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood
Bryon Aragam
Ruiyi Yang
145
0
0
29 Oct 2024
Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities
José A. Carrillo
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Dongyi Wei
AI4CE
91
4
0
22 Jul 2024
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
74
7
0
25 Jun 2024
Interaction-Force Transport Gradient Flows
E. Gladin
Pavel Dvurechensky
Alexander Mielke
Jia Jie Zhu
OT
95
6
0
27 May 2024
Geometry-Aware Instrumental Variable Regression
Heiner Kremer
Bernhard Schölkopf
85
0
0
19 May 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
51
0
0
01 Jan 2024
Big Learning Expectation Maximization
Yulai Cong
Sijia Li
68
2
0
19 Dec 2023
Multi-Objective Optimization via Wasserstein-Fisher-Rao Gradient Flow
Yinuo Ren
Tesi Xiao
Tanmay Gangwani
A. Rangi
Holakou Rahmanian
Lexing Ying
Subhajit Sanyal
65
4
0
22 Nov 2023
Hilbert's projective metric for functions of bounded growth and exponential convergence of Sinkhorn's algorithm
Stephan Eckstein
129
8
0
07 Nov 2023
Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient Flow
Rentian Yao
Linjun Huang
Yun Yang
84
4
0
01 Nov 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Yibo Yang
Stephan Eckstein
Marcel Nutz
Stephan Mandt
71
10
0
29 Oct 2023
Cramer Type Distances for Learning Gaussian Mixture Models by Gradient Descent
Ruichong Zhang
58
0
0
13 Jul 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
101
4
0
25 May 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
72
5
0
17 May 2023
An Explicit Expansion of the Kullback-Leibler Divergence along its Fisher-Rao Gradient Flow
Carles Domingo-Enrich
Aram-Alexandre Pooladian
MDE
92
12
0
23 Feb 2023
Local Minima Structures in Gaussian Mixture Models
Yudong Chen
Dogyoon Song
Xumei Xi
Yuqian Zhang
40
3
0
28 Sep 2020
1