ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.01104
  4. Cited By
KoopmanLab: machine learning for solving complex physics equations

KoopmanLab: machine learning for solving complex physics equations

3 January 2023
Wei Xiong
Muyuan Ma
Xiaomeng Huang
Ziyang Zhang
Pei Sun
Yang Tian
    AI4CE
ArXivPDFHTML

Papers citing "KoopmanLab: machine learning for solving complex physics equations"

12 / 12 papers shown
Title
FourCastNet: Accelerating Global High-Resolution Weather Forecasting
  using Adaptive Fourier Neural Operators
FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators
Thorsten Kurth
Shashank Subramanian
P. Harrington
Jaideep Pathak
Morteza Mardani
D. Hall
Andrea Miele
K. Kashinath
Anima Anandkumar
AI4Cl
77
184
0
08 Aug 2022
FourCastNet: A Global Data-driven High-resolution Weather Model using
  Adaptive Fourier Neural Operators
FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators
Jaideep Pathak
Shashank Subramanian
P. Harrington
S. Raja
Ashesh Chattopadhyay
...
Zong-Yi Li
Kamyar Azizzadenesheli
Pedram Hassanzadeh
K. Kashinath
Anima Anandkumar
AI4Cl
227
689
0
22 Feb 2022
Spectral Temporal Graph Neural Network for Multivariate Time-series
  Forecasting
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting
Defu Cao
Yujing Wang
Juanyong Duan
Ce Zhang
Xia Zhu
...
Yunhai Tong
Bixiong Xu
Jing Bai
Jie Tong
Qi Zhang
AI4TS
47
512
0
13 Mar 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
97
416
0
24 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
494
2,401
0
18 Oct 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
196
733
0
07 Mar 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
153
149
0
04 Mar 2020
Deep Learning Models for Global Coordinate Transformations that
  Linearize PDEs
Deep Learning Models for Global Coordinate Transformations that Linearize PDEs
Craig Gin
Bethany Lusch
Steven L. Brunton
J. Nathan Kutz
56
39
0
07 Nov 2019
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate
  Modeling and Uncertainty Quantification
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCV
BDL
97
642
0
21 Jan 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
71
1,250
0
27 Dec 2017
The Deep Ritz method: A deep learning-based numerical algorithm for
  solving variational problems
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
117
1,387
0
30 Sep 2017
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
250
14,008
0
19 Nov 2015
1