Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.00955
Cited By
v1
v2
v3 (latest)
Differentially Private Federated Clustering over Non-IID Data
3 January 2023
Yiwei Li
Shuai Wang
Chong-Yung Chi
Tony Q.S. Quek
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Differentially Private Federated Clustering over Non-IID Data"
15 / 15 papers shown
Title
Communication-Efficient Personalized Distributed Learning with Data and Node Heterogeneity
Zhuojun Tian
Zhaoyang Zhang
Yiwei Li
Mehdi Bennis
172
0
0
24 Apr 2025
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
158
255
0
09 Sep 2021
Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
60
193
0
12 May 2021
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
63
233
0
22 May 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
109
1,232
0
31 Mar 2020
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
151
1,007
0
04 Oct 2019
Robust Federated Learning in a Heterogeneous Environment
Avishek Ghosh
Justin Hong
Dong Yin
Kannan Ramchandran
OOD
FedML
61
217
0
16 Jun 2019
Secure Federated Matrix Factorization
Di Chai
Leye Wang
Kai Chen
Qiang Yang
FedML
53
321
0
12 Jun 2019
Clustering by Orthogonal NMF Model and Non-Convex Penalty Optimization
Shuai Wang
Tsung-Hui Chang
Ying Cui
J. Pang
54
30
0
03 Jun 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
192
429
0
29 Nov 2018
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
79
608
0
17 Jul 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
84
389
0
04 Jul 2018
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
143
1,902
0
08 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,130
0
01 Jul 2016
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
120
737
0
11 Nov 2015
1