Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.14647
Cited By
RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT
30 December 2022
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan von der Assen
T. Schenk
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT"
3 / 3 papers shown
Title
CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation
Chao Feng
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan Kreischer
Jan von der Assen
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
27
1
0
11 Aug 2023
A Lightweight Moving Target Defense Framework for Multi-purpose Malware Affecting IoT Devices
Jan von der Assen
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jordan Cedeno
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
13
6
0
14 Oct 2022
Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
T. Schenk
A. Iten
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
12
18
0
31 Jan 2022
1