ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.14647
  4. Cited By
RL and Fingerprinting to Select Moving Target Defense Mechanisms for
  Zero-day Attacks in IoT

RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT

30 December 2022
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan von der Assen
T. Schenk
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
    AAML
ArXivPDFHTML

Papers citing "RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT"

3 / 3 papers shown
Title
CyberForce: A Federated Reinforcement Learning Framework for Malware
  Mitigation
CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation
Chao Feng
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan Kreischer
Jan von der Assen
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
27
1
0
11 Aug 2023
A Lightweight Moving Target Defense Framework for Multi-purpose Malware
  Affecting IoT Devices
A Lightweight Moving Target Defense Framework for Multi-purpose Malware Affecting IoT Devices
Jan von der Assen
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jordan Cedeno
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
13
6
0
14 Oct 2022
Studying the Robustness of Anti-adversarial Federated Learning Models
  Detecting Cyberattacks in IoT Spectrum Sensors
Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
T. Schenk
A. Iten
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
12
18
0
31 Jan 2022
1