ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.14268
  4. Cited By
Detection of out-of-distribution samples using binary neuron activation
  patterns

Detection of out-of-distribution samples using binary neuron activation patterns

29 December 2022
Bartlomiej Olber
Krystian Radlak
A. Popowicz
Michal Szczepankiewicz
K. Chachula
    OODD
ArXivPDFHTML

Papers citing "Detection of out-of-distribution samples using binary neuron activation patterns"

8 / 8 papers shown
Title
Distribution Shifts at Scale: Out-of-distribution Detection in Earth Observation
Distribution Shifts at Scale: Out-of-distribution Detection in Earth Observation
Burak Ekim
G. Tadesse
Caleb Robinson
G. Q. Hacheme
Michael Schmitt
Rahul Dodhia
J. L. Ferres
OODD
102
1
0
18 Dec 2024
Going Beyond Conventional OOD Detection
Sudarshan Regmi
OODD
61
1
0
16 Nov 2024
Uncertainty-Guided Appearance-Motion Association Network for Out-of-Distribution Action Detection
Uncertainty-Guided Appearance-Motion Association Network for Out-of-Distribution Action Detection
Xiang Fang
Arvind Easwaran
B. Genest
36
4
0
16 Sep 2024
Extremely Simple Activation Shaping for Out-of-Distribution Detection
Extremely Simple Activation Shaping for Out-of-Distribution Detection
Andrija Djurisic
Nebojsa Bozanic
Arjun Ashok
Rosanne Liu
OODD
172
151
0
20 Sep 2022
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
188
879
0
21 Oct 2021
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
195
328
0
01 Oct 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1