Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.13902
Cited By
Likelihood-based generalization of Markov parameter estimation and multiple shooting objectives in system identification
20 December 2022
Nicholas Galioto
Alex Arkady Gorodetsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Likelihood-based generalization of Markov parameter estimation and multiple shooting objectives in system identification"
23 / 23 papers shown
Title
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
61
382
0
29 Apr 2021
Nonlinear state-space identification using deep encoder networks
G. Beintema
R. Tóth
Maarten Schoukens
15
40
0
14 Dec 2020
Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation
Georg Gottwald
Sebastian Reich
AI4CE
30
63
0
14 Jul 2020
Continuous-time system identification with neural networks: Model structures and fitting criteria
Marco Forgione
Dario Piga
10
65
0
03 Jun 2020
Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems
Sahin Lale
Kamyar Azizzadenesheli
B. Hassibi
Anima Anandkumar
61
95
0
25 Mar 2020
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
Nicholas Galioto
Alex Gorodetsky
43
32
0
04 Mar 2020
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
34
21
0
19 Feb 2020
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
43
578
0
13 Jan 2020
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
67
270
0
26 Sep 2019
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
38
225
0
23 Sep 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
43
876
0
04 Jun 2019
On the smoothness of nonlinear system identification
Antônio H. Ribeiro
K. Tiels
Jack Umenberger
Thomas B. Schon
L. A. Aguirre
14
53
0
02 May 2019
Finite Sample Analysis of Stochastic System Identification
Anastasios Tsiamis
George J. Pappas
21
147
0
21 Mar 2019
Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles
X. Jia
J. Willard
Anuj Karpatne
J. Read
Jacob Aaron Zwart
M. Steinbach
Vipin Kumar
PINN
AI4CE
10
211
0
31 Oct 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
193
5,024
0
19 Jun 2018
Non-asymptotic Identification of LTI Systems from a Single Trajectory
Samet Oymak
N. Ozay
44
222
0
14 Jun 2018
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories
Ian Fox
Lynn Ang
M. Jaiswal
R. Pop-Busui
Jenna Wiens
OOD
AI4TS
79
78
0
14 Jun 2018
Essentially No Barriers in Neural Network Energy Landscape
Felix Dräxler
K. Veschgini
M. Salmhofer
Fred Hamprecht
MoMe
95
430
0
02 Mar 2018
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
49
746
0
27 Feb 2018
A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control
Markus Giftthaler
Michael Neunert
M. Stäuble
J. Buchli
Moritz Diehl
34
100
0
29 Nov 2017
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
19
750
0
26 Oct 2017
A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Samuel L. Smith
Quoc V. Le
BDL
42
247
0
17 Oct 2017
Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint
G. Pillonetto
Tianshi Chen
A. Chiuso
G. Nicolao
L. Ljung
58
68
0
02 Jul 2015
1