Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.13848
Cited By
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
28 December 2022
Ilja Kuzborskij
Csaba Szepesvári
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks"
32 / 32 papers shown
Title
Improved Convergence Guarantees for Shallow Neural Networks
A. Razborov
ODL
51
1
0
05 Dec 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
179
68
0
27 Oct 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
74
115
0
30 Jun 2022
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
38
9
0
15 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
Volkan Cevher
56
31
0
02 Nov 2021
A spectral-based analysis of the separation between two-layer neural networks and linear methods
Lei Wu
Jihao Long
99
8
0
10 Aug 2021
Deep learning: a statistical viewpoint
Peter L. Bartlett
Andrea Montanari
Alexander Rakhlin
27
272
0
16 Mar 2021
Online nonparametric regression with Sobolev kernels
O. Zadorozhnyi
Pierre Gaillard
Sébastien Gerchinovitz
Alessandro Rudi
26
4
0
06 Feb 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
60
48
0
24 Jan 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
40
82
0
21 Dec 2020
Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
Tianyang Hu
Wei Cao
Cong Lin
Guang Cheng
100
52
0
06 Jul 2020
Analyzing the discrepancy principle for kernelized spectral filter learning algorithms
Alain Celisse
Martin Wahl
30
18
0
17 Apr 2020
Over-parametrized deep neural networks do not generalize well
Michael Kohler
A. Krzyżak
28
12
0
09 Dec 2019
Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow ReLU networks
Ziwei Ji
Matus Telgarsky
50
177
0
26 Sep 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
49
255
0
29 May 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
43
320
0
12 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
108
966
0
24 Jan 2019
Consistency of Interpolation with Laplace Kernels is a High-Dimensional Phenomenon
Alexander Rakhlin
Xiyu Zhai
95
79
0
28 Dec 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
106
769
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
170
1,457
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
130
1,261
0
04 Oct 2018
Does data interpolation contradict statistical optimality?
M. Belkin
Alexander Rakhlin
Alexandre B. Tsybakov
60
218
0
25 Jun 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
159
3,160
0
20 Jun 2018
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
71
100
0
25 May 2018
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
79
547
0
18 Dec 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
120
1,208
0
26 Jun 2017
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
77
343
0
18 Feb 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
58
329
0
14 Feb 2016
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
102
701
0
30 Dec 2014
Non-parametric Stochastic Approximation with Large Step sizes
Aymeric Dieuleveut
Francis R. Bach
39
169
0
02 Aug 2014
Early stopping and non-parametric regression: An optimal data-dependent stopping rule
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
57
299
0
15 Jun 2013
Optimistic Rates for Learning with a Smooth Loss
Nathan Srebro
Karthik Sridharan
Ambuj Tewari
124
281
0
20 Sep 2010
1