Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.12737
Cited By
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
24 December 2022
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence"
7 / 7 papers shown
Title
Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression
Pratik Rathore
Zachary Frangella
Madeleine Udell
Michał Dereziński
Madeleine Udell
42
1
0
14 Jul 2024
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
26
3
0
21 Sep 2023
Robust, randomized preconditioning for kernel ridge regression
Mateo Díaz
Ethan N. Epperly
Zachary Frangella
J. Tropp
R. Webber
34
11
0
24 Apr 2023
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
40
18
0
17 May 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
177
247
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
233
1,240
0
08 Jan 2021
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
86
277
0
09 Aug 2012
1