ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12611
  4. Cited By
Your diffusion model secretly knows the dimension of the data manifold

Your diffusion model secretly knows the dimension of the data manifold

23 December 2022
Jan Stanczuk
Georgios Batzolis
Teo Deveney
Carola-Bibiane Schönlieb
    DiffM
ArXivPDFHTML

Papers citing "Your diffusion model secretly knows the dimension of the data manifold"

18 / 18 papers shown
Title
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
Xiao Li
Zekai Zhang
Xiang Li
Siyi Chen
Zhihui Zhu
Peng Wang
Qing Qu
DiffM
125
1
0
09 Feb 2025
State Combinatorial Generalization In Decision Making With Conditional Diffusion Models
State Combinatorial Generalization In Decision Making With Conditional Diffusion Models
Xintong Duan
Yutong He
Fahim Tajwar
Wen-Tse Chen
Ruslan Salakhutdinov
Jeff Schneider
OffRL
AI4CE
136
1
0
22 Jan 2025
A Geometric Framework for Understanding Memorization in Generative Models
A Geometric Framework for Understanding Memorization in Generative Models
Brendan Leigh Ross
Hamidreza Kamkari
Tongzi Wu
Rasa Hosseinzadeh
Zhaoyan Liu
George Stein
Jesse C. Cresswell
Gabriel Loaiza-Ganem
102
8
0
31 Oct 2024
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
69
8
0
08 Oct 2024
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Willem Diepeveen
Georgios Batzolis
Zakhar Shumaylov
Carola-Bibiane Schönlieb
DiffM
68
3
0
02 Oct 2024
Statistical Efficiency of Score Matching: The View from Isoperimetry
Statistical Efficiency of Score Matching: The View from Isoperimetry
Frederic Koehler
Alexander Heckett
Andrej Risteski
DiffM
123
51
0
03 Oct 2022
Variational Diffusion Models
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
147
1,111
0
01 Jul 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
163
7,763
0
11 May 2021
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
226
269
0
18 Apr 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
120
657
0
22 Jan 2021
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
198
312
0
08 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
284
6,401
0
26 Nov 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
DiffWave: A Versatile Diffusion Model for Audio Synthesis
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffM
BDL
99
1,445
0
21 Sep 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
447
17,867
0
19 Jun 2020
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
224
6,875
0
12 Mar 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
404
16,947
0
20 Dec 2013
Testing the Manifold Hypothesis
Testing the Manifold Hypothesis
Charles Fefferman
S. Mitter
Hariharan Narayanan
117
531
0
01 Oct 2013
Intrinsic dimension estimation of data by principal component analysis
Intrinsic dimension estimation of data by principal component analysis
Mingyu Fan
N. Gu
Hong Qiao
Bo Zhang
89
37
0
10 Feb 2010
1