ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12393
  4. Cited By
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic
  Inference

A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference

23 December 2022
Emile van Krieken
Thiviyan Thanapalasingam
Jakub M. Tomczak
F. V. Harmelen
A. T. Teije
ArXivPDFHTML

Papers citing "A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference"

34 / 34 papers shown
Title
CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
Seewon Choi
Alaia Solko-Breslin
Rajeev Alur
Eric Wong
37
0
0
31 Mar 2025
Noise to the Rescue: Escaping Local Minima in Neurosymbolic Local Search
Alessandro Daniele
Emile van Krieken
65
0
0
03 Mar 2025
Beyond the convexity assumption: Realistic tabular data generation under quantifier-free real linear constraints
Beyond the convexity assumption: Realistic tabular data generation under quantifier-free real linear constraints
Mihaela C. Stoian
Eleonora Giunchiglia
89
2
0
25 Feb 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
61
2
0
16 Feb 2025
Neuro-Symbolic AI in 2024: A Systematic Review
Neuro-Symbolic AI in 2024: A Systematic Review
Brandon C. Colelough
William Regli
NAI
65
9
0
09 Jan 2025
Neuro-Symbolic AI: Explainability, Challenges, and Future Trends
Neuro-Symbolic AI: Explainability, Challenges, and Future Trends
Xin Zhang
Victor S. Sheng
AI4TS
34
4
0
07 Nov 2024
Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length
Symbolic regression via MDLformer-guided search: from minimizing prediction error to minimizing description length
Zihan Yu
Jingtao Ding
Yong Li
42
0
0
06 Nov 2024
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
Bowen Li
Zhaoyu Li
Qiwei Du
Jinqi Luo
Wenshan Wang
...
Katia P. Sycara
Pradeep Kumar Ravikumar
Alexander G. Gray
X. Si
Sebastian A. Scherer
AI4CE
LRM
81
3
0
01 Nov 2024
Neuro-symbolic Learning Yielding Logical Constraints
Neuro-symbolic Learning Yielding Logical Constraints
Zenan Li
Yunpeng Huang
Zhaoyu Li
Yuan Yao
Jingwei Xu
Taolue Chen
Xiaoxing Ma
Jian Lu
NAI
50
5
0
28 Oct 2024
A Fast Convoluted Story: Scaling Probabilistic Inference for Integer
  Arithmetic
A Fast Convoluted Story: Scaling Probabilistic Inference for Integer Arithmetic
Lennert De Smet
Pedro Zuidberg Dos Martires
19
1
0
16 Oct 2024
TL-PCA: Transfer Learning of Principal Component Analysis
TL-PCA: Transfer Learning of Principal Component Analysis
Sharon Hendy
Yehuda Dar
161
1
0
14 Oct 2024
EXPLAIN, AGREE, LEARN: Scaling Learning for Neural Probabilistic Logic
EXPLAIN, AGREE, LEARN: Scaling Learning for Neural Probabilistic Logic
Victor Verreet
Lennert De Smet
Luc de Raedt
Emanuele Sansone
25
0
0
15 Aug 2024
Data-Efficient Learning with Neural Programs
Data-Efficient Learning with Neural Programs
Alaia Solko-Breslin
Seewon Choi
Ziyang Li
Neelay Velingker
Rajeev Alur
Mayur Naik
Eric Wong
29
5
0
10 Jun 2024
On the Hardness of Probabilistic Neurosymbolic Learning
On the Hardness of Probabilistic Neurosymbolic Learning
Jaron Maene
Vincent Derkinderen
Luc de Raedt
41
3
0
06 Jun 2024
Latent Logic Tree Extraction for Event Sequence Explanation from LLMs
Latent Logic Tree Extraction for Event Sequence Explanation from LLMs
Zitao Song
Chao Yang
Chaojie Wang
Bo An
Shuang Li
60
4
0
03 Jun 2024
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Seanie Lee
Minsu Kim
Lynn Cherif
David Dobre
Juho Lee
...
Kenji Kawaguchi
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Moksh Jain
AAML
63
12
0
28 May 2024
ULLER: A Unified Language for Learning and Reasoning
ULLER: A Unified Language for Learning and Reasoning
Emile van Krieken
Samy Badreddine
Robin Manhaeve
Eleonora Giunchiglia
NAI
32
3
0
01 May 2024
On the Independence Assumption in Neurosymbolic Learning
On the Independence Assumption in Neurosymbolic Learning
Emile van Krieken
Pasquale Minervini
E. Ponti
Antonio Vergari
48
11
0
12 Apr 2024
PiShield: A PyTorch Package for Learning with Requirements
PiShield: A PyTorch Package for Learning with Requirements
Mihaela C. Stoian
Alex Tatomir
Thomas Lukasiewicz
Eleonora Giunchiglia
28
1
0
28 Feb 2024
Improving Neural-based Classification with Logical Background Knowledge
Improving Neural-based Classification with Logical Background Knowledge
Arthur Ledaguenel
Céline Hudelot
M. Khouadjia
NAI
44
1
0
20 Feb 2024
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
Emanuele Marconato
Samuele Bortolotti
Emile van Krieken
Antonio Vergari
Andrea Passerini
Stefano Teso
41
19
0
19 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
How Realistic Is Your Synthetic Data? Constraining Deep Generative
  Models for Tabular Data
How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data
Mihaela C. Stoian
Salijona Dyrmishi
Maxime Cordy
Thomas Lukasiewicz
Eleonora Giunchiglia
23
15
0
07 Feb 2024
Sandra -- A Neuro-Symbolic Reasoner Based On Descriptions And Situations
Sandra -- A Neuro-Symbolic Reasoner Based On Descriptions And Situations
Nicolas Lazzari
S. D. Giorgis
Aldo Gangemi
Valentina Presutti
27
4
0
01 Feb 2024
Amortizing intractable inference in large language models
Amortizing intractable inference in large language models
Marvin Schmitt
Moksh Jain
Daniel Habermann
Younesse Kaddar
Ullrich Kothe
Stefan T. Radev
Nikolay Malkin
AIFin
BDL
29
46
0
06 Oct 2023
Pre-Training and Fine-Tuning Generative Flow Networks
Pre-Training and Fine-Tuning Generative Flow Networks
Ling Pan
Moksh Jain
Kanika Madan
Yoshua Bengio
47
13
0
05 Oct 2023
Expected flow networks in stochastic environments and two-player
  zero-sum games
Expected flow networks in stochastic environments and two-player zero-sum games
Marco Jiralerspong
Bilun Sun
Danilo Vucetic
Tianyu Zhang
Yoshua Bengio
Gauthier Gidel
Nikolay Malkin
36
5
0
04 Oct 2023
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and
  Mitigation of Reasoning Shortcuts
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts
Emanuele Marconato
Stefano Teso
Antonio Vergari
Andrea Passerini
38
30
0
31 May 2023
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
  with GFlowNets
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Dinghuai Zhang
H. Dai
Nikolay Malkin
Aaron Courville
Yoshua Bengio
L. Pan
24
36
0
26 May 2023
Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and
  Concept Rehearsal
Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal
Emanuele Marconato
G. Bontempo
E. Ficarra
Simone Calderara
Andrea Passerini
Stefano Teso
NAI
LRM
CLL
35
20
0
02 Feb 2023
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Trajectory balance: Improved credit assignment in GFlowNets
Trajectory balance: Improved credit assignment in GFlowNets
Nikolay Malkin
Moksh Jain
Emmanuel Bengio
Chen Sun
Yoshua Bengio
145
166
0
31 Jan 2022
Logic Tensor Networks
Logic Tensor Networks
Samy Badreddine
Artur Garcez
Luciano Serafini
Michael Spranger
NAI
70
199
0
25 Dec 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
1