ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12379
16
0

Using MM principles to deal with incomplete data in K-means clustering

23 December 2022
Ali Beikmohammadi
    DRL
ArXiv (abs)PDFHTMLGithub
Abstract

Among many clustering algorithms, the K-means clustering algorithm is widely used because of its simple algorithm and fast convergence. However, this algorithm suffers from incomplete data, where some samples have missed some of their attributes. To solve this problem, we mainly apply MM principles to restore the symmetry of the data, so that K-means could work well. We give the pseudo-code of the algorithm and use the standard datasets for experimental verification. The source code for the experiments is publicly available in the following link: \url{https://github.com/AliBeikmohammadi/MM-Optimization/blob/main/mini-project/MM%20K-means.ipynb}.

View on arXiv
Comments on this paper