Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.10376
Cited By
The Third International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and Results
20 December 2022
Mark Niklas Muller
Christopher Brix
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Third International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and Results"
32 / 32 papers shown
Title
Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification
Kota Fukuda
Guanqin Zhang
Zhenya Zhang
Yulei Sui
Jianjun Zhao
45
0
0
02 May 2025
A Generalised Framework for Property-Driven Machine Learning
Thomas Flinkow
Marco Casadio
Colin Kessler
Rosemary Monahan
Ekaterina Komendantskaya
AAML
62
1
0
01 May 2025
BaB-ND: Long-Horizon Motion Planning with Branch-and-Bound and Neural Dynamics
Keyi Shen
Jiangwei Yu
Huan Zhang
Yunzhu Li
Yunzhu Li
87
1
0
12 Dec 2024
Creating a Formally Verified Neural Network for Autonomous Navigation: An Experience Report
Syed Ali Asadullah Bukhari
Thomas Flinkow
M. Inkarbekov
Barak A. Pearlmutter
Rosemary Monahan
72
0
0
21 Nov 2024
Verification of Neural Networks against Convolutional Perturbations via Parameterised Kernels
Benedikt Brückner
Alessio Lomuscio
AAML
54
0
0
07 Nov 2024
PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks
Xiyue Zhang
Benjie Wang
Marta Kwiatkowska
Huan Zhang
AAML
38
2
0
17 Aug 2024
ModelVerification.jl: a Comprehensive Toolbox for Formally Verifying Deep Neural Networks
Tianhao Wei
Luca Marzari
Kai S. Yun
Hanjiang Hu
Peizhi Niu
Xusheng Luo
Changliu Liu
42
0
0
30 Jun 2024
Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via Tightening Linear Approximation
Yuan Xiao
Shiqing Ma
Juan Zhai
Chunrong Fang
Jinyuan Jia
Zhenyu Chen
AAML
51
1
0
02 Jun 2024
Probabilistic Verification of Neural Networks using Branch and Bound
David Boetius
Stefan Leue
Tobias Sutter
42
0
0
27 May 2024
Monitizer: Automating Design and Evaluation of Neural Network Monitors
Muqsit Azeem
Marta Grobelna
Sudeep Kanav
Jan Křetínský
Stefanie Mohr
Sabine Rieder
39
2
0
16 May 2024
Scalable Exact Verification of Optimization Proxies for Large-Scale Optimal Power Flow
Rahul Nellikkath
Mathieu Tanneau
Pascal Van Hentenryck
Spyros Chatzivasileiadis
45
0
0
09 May 2024
Harnessing Neuron Stability to Improve DNN Verification
Hai V. Duong
Dong Xu
ThanhVu Nguyen
Matthew B. Dwyer
24
4
0
19 Jan 2024
DEM: A Method for Certifying Deep Neural Network Classifier Outputs in Aerospace
Guy Katz
Natan Levy
Idan Refaeli
Raz Yerushalmi
AAML
13
0
0
04 Jan 2024
The Pros and Cons of Adversarial Robustness
Yacine Izza
Sasha Rubin
AAML
25
1
0
18 Dec 2023
Comparing Differentiable Logics for Learning Systems: A Research Preview
Thomas Flinkow
Ba Pearlmutter
Rosemary Monahan
12
2
0
16 Nov 2023
Expediting Neural Network Verification via Network Reduction
Yuyi Zhong
Ruiwei Wang
Siau-Cheng Khoo
AAML
24
2
0
07 Aug 2023
Robustness Verification of Deep Neural Networks using Star-Based Reachability Analysis with Variable-Length Time Series Input
Neelanjana Pal
Diego Manzanas Lopez
Taylor T. Johnson
AI4TS
9
1
0
26 Jul 2023
Adaptive Certified Training: Towards Better Accuracy-Robustness Tradeoffs
Zhakshylyk Nurlanov
Frank R. Schmidt
Florian Bernard
OOD
29
0
0
24 Jul 2023
A DPLL(T) Framework for Verifying Deep Neural Networks
Hai V. Duong
Thanh-Dat Nguyen
Matthew B. Dwyer
25
8
0
17 Jul 2023
Verifying Global Neural Network Specifications using Hyperproperties
David Boetius
Stefan Leue
AAML
18
0
0
21 Jun 2023
Understanding Certified Training with Interval Bound Propagation
Yuhao Mao
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
45
15
0
17 Jun 2023
A Tale of Two Approximations: Tightening Over-Approximation for DNN Robustness Verification via Under-Approximation
Zhiyi Xue
Si Liu
Zhaodi Zhang
Yiting Wu
M. Zhang
AAML
23
2
0
26 May 2023
DeepBern-Nets: Taming the Complexity of Certifying Neural Networks using Bernstein Polynomial Activations and Precise Bound Propagation
Haitham Khedr
Yasser Shoukry
47
4
0
22 May 2023
TAPS: Connecting Certified and Adversarial Training
Yuhao Mao
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
28
10
0
08 May 2023
CGDTest: A Constrained Gradient Descent Algorithm for Testing Neural Networks
Vineel Nagisetty
Laura Graves
Guanting Pan
Piyush Jha
Vijay Ganesh
AAML
OOD
31
1
0
04 Apr 2023
Asymmetric Certified Robustness via Feature-Convex Neural Networks
Samuel Pfrommer
Brendon G. Anderson
Julien Piet
Somayeh Sojoudi
AAML
14
7
0
03 Feb 2023
First Three Years of the International Verification of Neural Networks Competition (VNN-COMP)
Christopher Brix
Mark Niklas Muller
Stanley Bak
Taylor T. Johnson
Changliu Liu
NAI
30
66
0
14 Jan 2023
Open- and Closed-Loop Neural Network Verification using Polynomial Zonotopes
Niklas Kochdumper
Christian Schilling
Matthias Althoff
Stanley Bak
28
33
0
06 Jul 2022
Abstraction and Refinement: Towards Scalable and Exact Verification of Neural Networks
Jiaxiang Liu
Yunhan Xing
Xiaomu Shi
Fu Song
Zhiwu Xu
Zhong Ming
21
10
0
02 Jul 2022
Learning Density Distribution of Reachable States for Autonomous Systems
Yue Meng
Dawei Sun
Zeng Qiu
Md Tawhid Bin Waez
Chuchu Fan
77
19
0
14 Sep 2021
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
30
128
0
09 Sep 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
234
1,837
0
03 Feb 2017
1