Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.10265
Cited By
High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach
20 December 2022
Martin Schwartz
P. Ciais
Catherine Ottlé
A. D. Truchis
C. Véga
Ibrahim Fayad
Martin Brandt
R. Fensholt
N. Baghdadi
Franccois Morneau
David Morin
D. Guyon
S. Dayau
J. Wigneron
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach"
11 / 11 papers shown
Title
Better Coherence, Better Height: Fusing Physical Models and Deep Learning for Forest Height Estimation from Interferometric SAR Data
Ragini Bal Mahesh
Ronny Hänsch
41
0
0
14 Apr 2025
High Resolution Tree Height Mapping of the Amazon Forest using Planet NICFI Images and LiDAR-Informed U-Net Model
F. Wagner
Ricardo Dalagnol
Griffin Carter
Mayumi C. M. Hirye
Shivraj Gill
...
Sarah R Worden
Martin Brandt
P. Ciais
Stephen C Hagen
Sassan Saatchi
AI4CE
56
0
0
17 Jan 2025
A high-resolution canopy height model of the Earth
Nico Lang
W. Jetz
Konrad Schindler
Jan Dirk Wegner
36
268
0
13 Apr 2022
Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops
S. D. Tommaso
Sherrie Wang
David B. Lobell
84
37
0
10 Sep 2021
Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles
Nico Lang
Nikolai Kalischek
J. Armston
Konrad Schindler
R. Dubayah
Jan Dirk Wegner
21
161
0
05 Mar 2021
Country-wide high-resolution vegetation height mapping with Sentinel-2
Nico Lang
Konrad Schindler
Jan Dirk Wegner
MDE
37
155
0
30 Apr 2019
Deep learning in remote sensing: a review
Xiaoxiang Zhu
D. Tuia
Lichao Mou
Gui-Song Xia
Liangpei Zhang
Feng Xu
Friedrich Fraundorfer
58
1,605
0
11 Oct 2017
A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community
John E. Ball
Derek T. Anderson
Chee Seng Chan
46
521
0
01 Sep 2017
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
315
37,704
0
20 May 2016
Cyclical Learning Rates for Training Neural Networks
L. Smith
ODL
118
2,515
0
03 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.2K
76,547
0
18 May 2015
1